Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T05:58:33.206Z Has data issue: false hasContentIssue false

On the role of ions in the formation of cubic boron nitride films by ion-assisted deposition

Published online by Cambridge University Press:  03 March 2011

P.B. Mirkarimi
Affiliation:
Sandia National Laboratories, Livermore, California 94550
K.F. McCarty
Affiliation:
Sandia National Laboratories, Livermore, California 94550
D.L. Medlin
Affiliation:
Sandia National Laboratories, Livermore, California 94550
W.G. Wolfer
Affiliation:
Sandia National Laboratories, Livermore, California 94550
T.A. Friedmann
Affiliation:
Sandia National Laboratories, Livermore, California 94550
E.J. Klaus
Affiliation:
Sandia National Laboratories, Livermore, California 94550
G.F. Cardinale
Affiliation:
Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, California 95616.
D.G. Howitt
Affiliation:
Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, California 95616.
Get access

Abstract

We have investigated how ion irradiation can selectively promote the formation of dense sp3-bonded cubic boron nitride (cBN) over the graphite-like sp2-bonded phases. We have conducted a series of experiments using ion-assisted pulsed laser deposition in which either the ion mass (mion) or ion energy (E) was varied in conjunction with the ratio of ion flux to depositing atom flux (J/a). For a fixed ion energy and mass, there is a critical J/a above which cBN formation is initiated, a window of J/a values in which large cBN percentages are obtained, and a point at which J/a is so large that the resputter and deposition rates balance and there is no net film deposition, in agreement with Kester and Messier. As do Kester and Messier, we find that cBN formation is controlled by a combination of experimental parameters that scale with the momentum of the ions. However, unlike Kester and Messier, we do not find that cBN formation scales with the maximum momentum that can be transferred in a single binary collision, as either incorrectly formulated by Targove and Macleod and used by Kester and Messier, or as correctly formulated. Instead we observe that cBN formation best scales with the total momentum of the incident ions, (mionE)1/2. We also consider the mechanistic origins of this (mionE)1/2 dependence. Computer simulations of the interaction of ions with BN show that cBN formation cannot be simply scaled to parameters such as the number of atomic displacements or the number of vacancies produced by the ion irradiation. A critical examination of the literature shows that none of the proposed models satisfactorily accounts for the observed (mionE)1/2 dependence. We present a quantitative model that describes the generation of stress during ion-assisted film growth. The model invokes a kinetic approach to defect production and loss. We apply a simplified version of the model to cBN synthesis, and find that it predicts an approximate (mionE)1/2 dependence for cBN formation.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Holleck, H., J. Vac. Sci. Technol. A 4, 2661 (1986).CrossRefGoogle Scholar
2Vel, L., Demazeau, G., and Etourneau, J., Mater. Sci. Eng. B 10, 149 (1991).CrossRefGoogle Scholar
3DeVries, R. C., GE CRD Report No. 72CRD178 (1972).Google Scholar
4Arya, S. P. S. and D'Amico, A., Thin Solid Films 157, 267 (1988).CrossRefGoogle Scholar
5Yarbrough, W. A., J. Vac. Sci. Technol. A 9, 1145 (1991).CrossRefGoogle Scholar
6Wentorf, R. H. Jr., J. Chem. Phys. 36, 1990 (1962).CrossRefGoogle Scholar
7Mishima, O., in Synthesis and Properties of Boron Nitride, edited by Pouch, J. J. and Alterovitz, S. A. (Trans Tech Publications, Ltd., Brookfield, 1990), Vol. 5455, p. 313.Google Scholar
8Murakawa, M. and Watanabe, S., in Applications of Diamond Films and Related Materials, edited by Tzeng, Y., Yoshikawa, M., Murakawa, M., and Feldman, A. (Elsevier, The Netherlands, 1991), p. 661.Google Scholar
9Angus, J. C., Wang, Y., and Sunkara, M., Annu. Rev. Mater. Sci. 21, 221 (1991).CrossRefGoogle Scholar
10hBN has been considered to be the thermodynamically stable phase at ambient conditions, but new work suggests that cBN may be the thermodynamically stable phase at ambient condition [see Nakano and Fukunaga, Diamond and Rel. Mater. 2, 1409 (1993), and V.L. Solozhenko, Thermochimican Acta 218, 221 (1993)]. The large activation energy barrier between hBN and cBN is said to account for the difficulty in synthesizing cBN at ambient conditions. Regardless of whether hBN or cBN is the equilibrium phase at ambient conditions, high pressures are required for bulk synthesis.Google Scholar
11Gissler, W., Haupt, J., Crabb, T. A., Gibson, P. N., and Rickerby, D. G., Mater. Sci. Eng. A 139, 284 (1991).CrossRefGoogle Scholar
12Wada, T. and Yamashita, N., J. Vac. Sci. Technol. A10, 515 (1992).CrossRefGoogle Scholar
13Inagawa, K., Watanabe, K., Ohsone, H., Saitoh, K., and Itoh, A., J. Vac. Sci. Technol. A 5, 2696 (1987).CrossRefGoogle Scholar
14Ballal, A. K., Salamanca-Riba, L., Doll, G. L., Taylor, C. A. II, and Clarke, R., J. Mater. Res. 7, 1618 (1992).CrossRefGoogle Scholar
15Ballal, A. K., Salamanca-Riba, L., Taylor, C. A. II, and Doll, G. L., Thin Solid Films 224, 46 (1993).CrossRefGoogle Scholar
16Friedmann, T. A., Clift, W. M., Johnsen, H. A., Klaus, E. J., McCarty, K. F., Medlin, D. L., Mills, M. J., and Ottesen, D. K., in Laser Ablation in Materials Processing: Fundamentals and Applications, edited by Braren, B., Dubowski, J. J., and Norton, D. P. (Mater. Res. Soc. Symp. Proc. 285, Pittsburgh, PA, 1993), p. 507.Google Scholar
17Kester, D. J. and Messier, R., J. Appl. Phys. 72, 504 (1992).CrossRefGoogle Scholar
18Targove, J. D. and Macleod, H. A., Appl. Opt. 27, 3779 (1988).CrossRefGoogle Scholar
19McKenzie, D.R., McFall, W. D., Sainty, W. G., Davis, C. A., and Collins, R. E., Diamond and Rel. Mater. 2, 970 (1993).CrossRefGoogle Scholar
20Tanabe, N. and Iwaki, M., Nucl. Instrum. Meth. B80/81, 1349 (1993).CrossRefGoogle Scholar
21Okamoto, M., Utsumi, Y., and Osaka, Y., Plasma Sources Sci. Technol. 2, 1 (1993).CrossRefGoogle Scholar
22Windischmann, H., J. Vac. Sci. Technol. A 9, 2431 (1991).CrossRefGoogle Scholar
23Friedmann, T. A., Mirkarimi, P. B., Medlin, D. L., McCarty, K. F., Klaus, E. J., Boehme, D., Johnsen, H. A., Mills, M. J., and Ottesen, D. K., J. Appl. Phys. (in press).Google Scholar
24Given that the deposition flux is pulsed, the deposition rate,a, is a time averaged value. Since we are depositing only a small fraction of a monolayer (<0.1 Å) per laser pulse, and the ion-solid interactions occur primarily below the surface, the pulsed deposition source is essentially equivalent to a continuous source for the issues addressed here.Google Scholar
25Vechten, D. V., Hubler, G. K., and Donovan, E. P., Vacuum 36, 841 (1986).CrossRefGoogle Scholar
26The ablated material should have energies of a few tens of eV based on a study of pyrolytic BN ablated in vacuum with comparable laser (248 nm) fluences (D. B. Geoghegan, personal communication); this is small compared to the 500–1200 eV ions used in this study. Also, whatever the energy of the ablated material, it is a constant effect independent of variations in ion energy, current, or mass. That is, neglecting the energy/momentum of the ablated species will not affect the differences used to distinguish between the various parametrizations of cBN formation.Google Scholar
27Burat, O., Bouchier, D., Stambouli, V., and Gautherin, G., J. Appl. Phys. 68, 2780 (1990).CrossRefGoogle Scholar
28Geick, R., Penny, C. H., and Rupprecht, G., Phys. Rev. 146, 543 (1966).CrossRefGoogle Scholar
29Gielisse, P. J., Mitra, S. S., Plendl, J. N., Griffis, R. D., Mansur, L. C., Marshall, R., and Pascoe, E. A., Phys. Rev. 155, 1039 (1967).CrossRefGoogle Scholar
30McKenzie, D. R., Muller, D., and Pailthorpe, B. A., Phys. Rev. Lett. 67, 773 (1991).CrossRefGoogle Scholar
31Windischmann, H., J. Appl. Phys. 62, 1800 (1987).CrossRefGoogle Scholar
32Sigmund, P., in Sputtering by Particle Bombardment, edited by Behrisch, R. (Springer, Berlin, 1981), Vol. 1, p. 49.Google Scholar
33Hwangbo, C. K., Lingg, L., Lehan, J. P., Macleod, H. A., Makous, J. L., and Kim, S. Y., Appl. Opt. 28, 2769 (1989).CrossRefGoogle Scholar
34Nir, D., J. Vac. Sci. Technol. A 4, 2954 (1986).CrossRefGoogle Scholar
35Window, B., J. Vac. Sci. Technol. A 7, 3036 (1989).CrossRefGoogle Scholar
36Davis, C. A., Thin Solid Films 226, 30 (1993).CrossRefGoogle Scholar
37Windischmann, H., Crit. Rev. Solid State 17, 547 (1992).CrossRefGoogle Scholar
38Weissmantel, C., J. Vac. Sci. Technol. 18, 179 (1981).CrossRefGoogle Scholar
39Seitz, F. and Koehler, J. S., in Progress in Solid State Physics (Academic Press, New York, 1954), Vol. 2, p. 30.Google Scholar
40Nastasi, M. and Mayer, J. W., Mater. Sci. Rep. 6, 1 (1991).CrossRefGoogle Scholar
41Lifshitz, Y., Kasi, S. R., and Rabalais, J. W., Phys. Rev. B 41, 10468 (1990).CrossRefGoogle Scholar
42Robertson, J., Diamond and Rel. Mater. 2, 984 (1993).CrossRefGoogle Scholar
43Steffen, H. J., Marton, D., and Rabalais, J. W., Phys. Rev. Lett. 68, 1726 (1992).CrossRefGoogle Scholar
44Koike, J., Parkin, D. M., and Mitchell, T. E., Appl. Phys. Lett. 60, 1450 (1992).CrossRefGoogle Scholar
45Ikeda, T., Satou, T., and Satoh, H., Surf. Coatings and Technol. 50, 33 (1991).CrossRefGoogle Scholar
46Medlin, D. L., Friedmann, T. A., Mirkarimi, P. B., McCarty, K. F., and Mills, M. J., in Phase Transformations in Thin Films—Thermodynamics and Kinetics, edited by Atzmon, M., Greer, A. L., Harper, J. M. E., and Libera, M. R. (Mater. Res. Soc. Symp. Proc. 311, Pittsburgh, PA 1993).Google Scholar
47Medlin, D. L., Friedmann, T. A., Mirkarimi, P. B., Rez, P., McCarty, K. F., and Mills, M. J., J. Appl. Phys. (in press).Google Scholar
48McKenzie, D.R., Cockayne, D. J. H., Muller, D. A., Murakawa, M., Miyake, S., Wantanabe, S., and Fallon, P., J. Appl. Phys. 70, 3007 (1991).CrossRefGoogle Scholar
49Kester, D. J., Ailey, K. S., Davis, R. F., and More, K. L., J. Mater. Res. 8, 1213 (1993).CrossRefGoogle Scholar
50Shanfield, S. and Wolfson, R., J. Vac. Sci. Technol. A 1, 323 (1983).CrossRefGoogle Scholar
51Ziegler, J. F., Biersak, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
52Doan, N. V. and Rossi, F., Solid State Phenomena 30&31, 75 (1993).Google Scholar
53Kinchin, G. H. and Pease, R. S., Rept. Progr. Phys. 18, 1 (1955).CrossRefGoogle Scholar
54McKenzie, D. R., Muller, D. A., Kravtchinskaia, E., Segal, D., Cockayne, D. J. H., Amaratunga, G., and Silva, R., Thin Solid Films 206, 198 (1991).CrossRefGoogle Scholar
55Koskinen, J., J. Appl. Phys. 63, 2094 (1988).CrossRefGoogle Scholar
56Ishikawa, J., Takeiri, Y., Ogawa, K., and Takagi, T., J. Appl. Phys. 61, 2509 (1987).CrossRefGoogle Scholar
57Weissmantel, C., Thin Solid Films 92, 55 (1982).CrossRefGoogle Scholar
58DeVries, R. C., in Diamond and Diamond-Like Films and Coatings, edited by Clausing, R. E. (Plenum Press, New York, 1991), p. 151.CrossRefGoogle Scholar
59Daley, R. S., Terminello, L. J., Mirkarimi, P. B., and McCarty, K. F., unpublished.Google Scholar
60While ion energy is also lost to phonons and ionization events, in the context of the model the important pathway for energy loss is to defect production.Google Scholar
61See, for example, Brailsford, A. D. and Bullough, R., J. Nucl. Mater. 44, 121 (1972).CrossRefGoogle Scholar
62Wolfer, W. G. and Si-Ahmed, A., J. Nucl. Mater. 99, 117 (1981).CrossRefGoogle Scholar
63In a constrained film, the stress is biaxial. However, in order to potentially compare with a thermodynamic pressure (p), we give the hydrostatic stress σH = ¾ (σ11 + σ2233) = –p, where σii are the diagonal components of the stress tensor.Google Scholar
64Wolfer, W. G., J. Phys. F (Metal Phys.) 12, 425 (1982).CrossRefGoogle Scholar
65Eberhardt, P., in Conf. on Dimensional Stability and Mechanical Behavior of Irradiated Metals and Alloys in London (British Nucl. Energy Society, 1983).Google Scholar
66Wollenberger, H. J., in Vacancies and Interstitials in Metals, edited by Seeger, A., Schumacher, D., Schilling, W., and Diehl, J. (North-Holland, Amsterdam, 1970), p. 215.Google Scholar
67Barbu, A. and Martin, G., Solid State Phenomena 30&31, 179 (1993).Google Scholar
68Thrower, P. A. and Mayer, R. M., Phys. Status Solidi 47, 11 (1978).CrossRefGoogle Scholar
69Williams, D. S., J. Appl. Phys. 57, 2340 (1985).CrossRefGoogle Scholar
70Johnson, W. A., J. Vac. Sci. Technol. B 1, 257 (1987).CrossRefGoogle Scholar
71American Institute of Physics Handbook, edited by Gray, D.E. (McGraw-Hill, New York, 1982).Google Scholar