Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T00:29:31.171Z Has data issue: false hasContentIssue false

On the role of diffusion in phase selection during reactions at interfaces

Published online by Cambridge University Press:  31 January 2011

C.V. Thompson*
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, United Kingdom
*
a)Permanent address: Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
Get access

Abstract

It is argued that interdiffusion must precede nucleation of new phases during reactions at interfaces between compositionally different phases. The relative rates at which elemental components diffuse in the reacting phases control the sequence in which phases can form, and can also strongly affect the relative nucleation rates of alloy products, especially in the transient nucleation regime. While detailed predictions of the relative nucleation rates require usually unavailable knowledge of the energies of the relevant interfaces, in some cases, knowledge of the relevant diffusivities, along with a thermodynamic analysis, can lead to predictions of likely phase formation sequences. These concepts are used to explain the association of diffusional asymmetry with systems that undergo solid state amorphization, and to specify semiquantitatively the degree of asymmetry required for solid state amorphization.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Tu, K. N., Annu. Rev. Mater. Sci. IS, 147 (1985).CrossRefGoogle Scholar
2.Fishman, S. G., Interfaces in Metal-Ceramic Composites, edited by Lin, R. Y., Arsenault, R. J., Martins, G. P., and Fishman, S. G. (The Minerals, Metals and Materials Society, Warrendale, PA, 1990), p. 3.Google Scholar
3.Klomp, J. T., Joining Ceramics, Glass and Metal, edited by Kraft, W., p. 55 (1989).Google Scholar
4.Ostwald, W., Z. Physik Chem. 22, 289 (1897).CrossRefGoogle Scholar
5.Johnson, W. L., Prog, in Mater. Sci. 30, 81 (1986).CrossRefGoogle Scholar
6.Gosele, U. and Tu, K. N., J. Appl. Phys. 53, 3252 (1982).CrossRefGoogle Scholar
7.d'Heurle, F. M., J. Mater. Res. 3, 167 (1988).Google Scholar
8.Clevenger, L. A. and Thompson, C. V., J. Appl. Phys. 67, 1325 (1990).CrossRefGoogle Scholar
9.Thompson, C. V., Clevenger, L. A., DeAvillez, R. R., Ma, E., and Miura, H., in Thin Film Structures and Phase Stability, edited by Clemens, B. M. and Johnson, W. L. (Mater. Res. Soc. Symp. Proc. 187, Pittsburgh, PA, 1990), p. 61.Google Scholar
10.Highmore, R. J., Greer, A. L., Leake, J. A., and Evetts, J. E., Mater. Lett. 6, 401 (1988).CrossRefGoogle Scholar
11.Fecht, H. J. and Johnson, W. L., Nature 334, 50 (1988).CrossRefGoogle Scholar
12.Fecht, H. J., Desre, P. J., and Johnson, W. L., Philos. Mag. B59, 577 (1989).CrossRefGoogle Scholar
13.Kauzmann, W., Chem. Rev. 43, 219 (1948).CrossRefGoogle Scholar
14.Thompson, C. V. and Spaepen, F., Acta Metall. 31, 2021 (1983).CrossRefGoogle Scholar
15.Atzmon, M., Phys. Rev. Lett. 65, 2889 (1990).CrossRefGoogle Scholar
16.Kelton, K. F., Greer, A. L., and Thompson, C. V., J. Chem. Phys. 79, 6261 (1983).CrossRefGoogle Scholar
17.Clemens, B. M., Schwarz, R. B., and Johnson, W. L., J. Non-Cryst. Solids 61/62, 817 (1984).CrossRefGoogle Scholar
18.Hood, G. M. and Schultz, R. J., Philos. Mag. 26, 329 (1972).CrossRefGoogle Scholar
19.Ehrhart, P., Averback, R. S., Hahn, H., Yadavalli, S., and Flynn, C. P., J. Mater. Res. 3, 1276 (1988).CrossRefGoogle Scholar
20.Hood, G. M. and Schultz, R. J., Acta Metall. 22, 459 (1974).CrossRefGoogle Scholar
21.Horvath, J., Dyment, F., and Mehrer, H., J. Nucl. Mater. 126, 206 (1984).CrossRefGoogle Scholar
22.Saunders, N. and Miodownik, A. P., J. Mater. Res. 1, 38 (1986).CrossRefGoogle Scholar
23.Bormann, R., Gartner, F., and Zoltzer, K., J. Less-Common Met. 145, 19 (1988).CrossRefGoogle Scholar
24.Toschev, S. and Gutzow, I., Phys. Status Solidi 21, 683 (1967).CrossRefGoogle Scholar
25.Kashchiev, D., Surf. Sci. 14, 209 (1969).CrossRefGoogle Scholar