Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-17T20:36:38.070Z Has data issue: false hasContentIssue false

On the optimization of a dc arcjet diamond chemical vapor deposition reactor

Published online by Cambridge University Press:  31 January 2011

S. W. Reeve
Affiliation:
Chemistry Division, Naval Air Warfare Center, China Lake, California 93555
W. A. Weimer
Affiliation:
Chemistry Division, Naval Air Warfare Center, China Lake, California 93555
D. S. Dandy
Affiliation:
Department of Chemical Engineering, Colorado State University, Fort Collins, Colorado 80523
Get access

Abstract

Based on results from chemical kinetic model calculations, a method to improve diamond film growth in a dc arcjet chemical vapor deposition reactor has been developed. Introducing the carbon source gas (CH4) into an Ar/H2 plasma in close proximity to the substrate produced diamond films exhibiting simultaneous improvements in quality and mass deposition rates. These improvements result from a reduced residence time of the methane in the plasma which inhibits the hydrocarbon chemistry in the gas from proceeding significantly beyond methyl radical production prior to encountering the substrate. Improvements in growth rate were modest, increasing by only a factor of two. Optical emission actinometry measurements indicate that the flux of atomic hydrogen across the stagnation layer to the substrate is mass diffusion limited. Since diamond growth depends upon the flux of atomic H to the substrate, these results suggest that under the conditions examined here, a low atomic H flux to the substrate poses an upper limit on the attainable diamond growth rate.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Reeve, S. W., Weimer, W. A., and Cerio, F. M., J. Appl. Phys. 74, 7521 (1993).CrossRefGoogle Scholar
2.Reeve, S. W., Weimer, W. A., and Dandy, D. S., Appl. Phys. Lett. 63, 2487 (1993).CrossRefGoogle Scholar
3.Reeve, S. W. and Weimer, W. A., Thin Solid Films 253, 103 (1994).CrossRefGoogle Scholar
4.Ager, J. W. III, Veirs, D. K., and Rosenblatt, G. M., Phys. Rev. B 43, 6491 (1991).CrossRefGoogle Scholar
5.Robins, L. H., Farabaugh, E. N., and Feldman, A., J. Mater. Res. 5, 2456 (1990)CrossRefGoogle Scholar
6.Yoshikawa, M., Ishida, H., Ishitani, A., Koizumi, S., and Inuzuka, T., Appl. Phys. Lett. 58, 1387 (1991).CrossRefGoogle Scholar
7.Sharma, S. C., Green, M., Hyer, R. C., Dark, C. A., Black, T. D., Chourasia, A. R., Chopra, D. R., and Mishra, K. K., J. Mater. Res. 5, 2424 (1990).CrossRefGoogle Scholar
8.Dylla, H. F. and Blanchard, W. R., J. Vac. Sci. Technol. A 1, 1297 (1983).CrossRefGoogle Scholar
9.Rozgonyi, G. A., J. Vac. Sci. Technol. 3, 187 (1983).CrossRefGoogle Scholar
10.Coltrin, M. E., Moffat, H. K., Kee, R. J., and Rupley, F.M., Sandia Report SAND93–0478 (1993).Google Scholar
11.Dandy, D. S. and Coltrin, M. E., J. Mater. Res. 10, 1993 (1995).CrossRefGoogle Scholar
12.Knight, D. S. and White, W.B., J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
13.Wada, N., Gaczi, P. J., and Solin, S.A., J. Non-Cryst. Solids 35/36, 543 (1980).CrossRefGoogle Scholar
14.Borghesi, A. and Guizzetti, G., in Handbook of Optical Constants of Solids, edited by Palik, E.D. (Academic Press, New York, 1991), p. 458. Absorption coefficient α = 4πk/λ, using k = 1.31 and λ = 488.0 nm.Google Scholar
15.Shroder, R. E., Nemanich, R. J., and Glass, J. T., Phys. Rev. 41, 3738 (1990).CrossRefGoogle Scholar
16.Moustakas, T. D., in Synthetic Diamond: Emerging CVD Science and Technology, edited by Spear, K. E. and Dismukes, J. P. (Wiley, New York, 1994), Chap. 6.Google Scholar
17.Harris, D. C., Infrared Window and Dome Materials (SPIE Optical Engineering Press, Bellingham, WA, 1992), pp. 69,70.Google Scholar
18.Dandy, D. S. and Coltrin, M. E., Appl. Phys. Lett. 66, 391 (1995).CrossRefGoogle Scholar
19.Reeve, S.W. and Weimer, W. A., Thin Solid Films 236, 91 (1993).CrossRefGoogle Scholar
20.Celii, F. G. and Butler, J. E., Ann. Rev. Phys. Chem. 42, 643 (1991).CrossRefGoogle Scholar
21.Coburn, J.W. and Chen, M., J. Appl. Phys. 51, 3134 (1980).CrossRefGoogle Scholar
22.Gottscho, R.A. and Miller, T.A., Pure & Appl. Chem. 56, 189 (1984).CrossRefGoogle Scholar
23.Dreyfus, R.W., Jasinski, J.M., Walkup, R. E., and Selwyn, G. S., Pure & Appl. Chem. 57, 1265 (1985).CrossRefGoogle Scholar
24.Miller, T.A., J. Vac. Sci. Technol. A 4, 1768 (1986).CrossRefGoogle Scholar
25.Mucha, J. A., Flamm, D.F., and Ibbotson, D.E., J. Appl. Phys. 65, 3448 (1989).CrossRefGoogle Scholar
26.Zhu, W., Inspektor, A., Badzian, A. R., Mckenna, T., and Messier, R., J. Appl. Phys. 68, 1489 (1990).CrossRefGoogle Scholar
27.Granier, A., Chereau, D., Henda, K., Safari, R., and Leprince, P., J. Appl. Phys. 75, 104 (1994).CrossRefGoogle Scholar
28.d'Agnostino, R., Cramarossa, F., De Benedictis, S., and Ferraro, G., J. Appl. Phys. 52, 1259 (1981).CrossRefGoogle Scholar
29.Gottscho, R. A., Davis, G. P., and Burton, R. H., J. Vac. Sci. Technol. A 1, 622 (1983).CrossRefGoogle Scholar
30.Gottscho, R. A. and Donnelly, V. M., J. Appl. Phys. 56, 245 (1984).CrossRefGoogle Scholar
31.Walkup, R. E., Saenger, K. L., and Selwyn, G. S., J. Chem. Phys. 84, 2668 (1986).CrossRefGoogle Scholar
32.Kee, R. J., Rupley, F. M., and Miller, J. A., Sandia National Laboratories Report, SAND89–8009 (1989).Google Scholar
33.Kee, R. J., Grcar, J.F., Smooke, M. D., and Miller, J. A., Sandia National Laboratories Report, SAND85–8240 (1985).Google Scholar