Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-10-01T10:17:20.623Z Has data issue: false hasContentIssue false

On the microstructure and thermal stability of rapidly quenched Fe–B alloys in the intermediate composition range between the crystalline and amorphous states

Published online by Cambridge University Press:  03 March 2011

M.B. Fernández van Raap
Affiliation:
Departamento de Fisica, Facultad de Ciencias Exacias, Universidad Nacional de La Plata, Casilla de Correos 67, 1900 La Plata, Argentina
F.H. Sánchez
Affiliation:
Departamento de Fisica, Facultad de Ciencias Exacias, Universidad Nacional de La Plata, Casilla de Correos 67, 1900 La Plata, Argentina
Y.D. Zhang
Affiliation:
Physics Department, University of Connecticut, 2152 Hillside Road, Storrs, Connecticut 06269
Get access

Abstract

The structure and the thermal stability of the Fe0.89B0.11 rapidly quenched alloy have been investigated. Transmission Mössbauer measurements were carried out as a function of temperature in the range from 148 K to 513 K. Room temperature x-ray diffraction and transmission and conversion-electron Mössbauer experiments, as well as 4.2 K spin-echo nuclear magnetic resonance measurements, were also performed after some selected thermal treatments for one hour between 523 K and 1273 K. Based on these experiments it is suggested that the alloy is inhomogeneous at nanoscopic scale and consists of a fine dispersion of a defective boride phase with an o-Fe3B-like short-range order, embedded in an α-Fe matrix. This result gives support to the models which indicate phase separation in the amorphous phase with o-Fe3B short-range order prevailing in the hypereutectic iron concentration range. This phase was found to be less stable than the undefective one present in the less boron concentrated alloys. The transformation into the equilibrium phases, analyzed with an Arrhenius-type temperature dependence for the increase of the relative fraction of Fe2B, led to an activation energy Ea = 1.38 ± 0.68 eV/atom.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Dubois, J. M. and Le Caër, G., Nucl. Instrum. Methods. 199, 307 (1982).CrossRefGoogle Scholar
2Zhang, Y. D., Budnick, J. I., Ford, J. C., and Hines, W.A., unpublished.Google Scholar
3Pokatilov, V. S., Sov. Phys. Dokl. 29(3), 234 (1984).Google Scholar
4Gaskell, P. H., J. Non-Cryst. Solids 32, 207 (1979); Hamada, T. and Fujita, F. E., Jpn. J. Appl. Phys. 24, 249 (1985).CrossRefGoogle Scholar
5Ray, R. and Hasegawa, R., Solid State Commun. 27, 471 (1978).CrossRefGoogle Scholar
6Sánchez, F.H., Budnick, J. I., Zhang, Y. D., Hines, W. A., and Choi, M., Phys. Rev. B 34, 4738 (1986).CrossRefGoogle Scholar
7Budnick, J. I., Sánchez, F.H., Zhang, Y. D., Choi, M., Hines, W. A., Zhang, Z. Y., Ge, S. H., and Hasegawa, R., IEEE Trans. Magn. MAG 23, 1937 (1987).CrossRefGoogle Scholar
8Fernández van Raap, M.B. and Sánchez, F.H., in Applications of the Mössbauer Effects, Proceedings of the First Latin American Conference, edited by Baggio-Saitovich, E., Galvao da Silva, E., and Rechenbergs, H.R. (World Scientific, Singapore, 1990), p. 278.Google Scholar
9Fernández van Raap, M.B. and Sánchez, F.H., J. Appl. Phys. 66, 875 (1989).CrossRefGoogle Scholar
10Hasegawa, R. and Ray, R., J. Appl. Phys. 49, 4174 (1978).CrossRefGoogle Scholar
11Budnick, J. I. and Sokalski, S., in Hyperfine Interactions, edited by Freeman, A.J. and Frankel, R.B. (Academic Press, New York, 1967), p. 724.Google Scholar
12Vertés, A., Korecz, L., and Burgeer, K., in Mössbauer Spectroscopy (Elsevier Scientific Publishing Company, New York, 1979), p. 33.Google Scholar
13Welfringer, J., Thesis, Lorraine (1983).Google Scholar
14Leminus, B., These d'Etat Strasbourg (1978).Google Scholar
15Chien, C. L., Musser, D., Gyorgy, E. M., Sherwood, R. C., Chen, H. S., Luborsky, F. E., and Walter, J. L., Phys. Rev. B 20, 283 (1979).CrossRefGoogle Scholar
16Tackás, L., Cadeville, M. C., and Vincze, I., J. Phys. F5, 800 (1975).CrossRefGoogle Scholar
17Zhang, Y. D., Budnick, J. I., Sánchez, F.H., Hines, W. A., Yang, D. P., and Livingston, J. D., J. Appl. Phys. 61, 4358 (1987).CrossRefGoogle Scholar
18Wojcik, M., Lerchner, H., Deppe, P., Li, F. S., Rosenberg, M., and Livingston, J. D., J. Appl. Phys. 55, 2288 (1984).CrossRefGoogle Scholar
19Sánchez, F.H., Fernández van Raap, M.B., and Budnick, J. I., Phys. Rev. B 46, 13881 (1992).CrossRefGoogle Scholar
20Brakman, C. M., Gommers, A. W. J., and Mittemeijer, E. J., J. Mater. Res. 4, 1354 (1989).CrossRefGoogle Scholar
21Ingalls, R., van der Woude, F., and Sawatzky, G.A., in Mössbauer homer Shifts, edited by Shenoy, G.K. and Wagner, F.W. (NorthHolland, Amsterdam, 1978), pp. 415418.Google Scholar
22Ingalls, R., Solid State Commun. 14, 11 (1974).CrossRefGoogle Scholar
23Sánchez, F.H. and Fernández van Raap, M.B., Phys. Rev. B 46, 9013 (1992).CrossRefGoogle Scholar
24Gaskell, P. H., in Glassy Metals II, edited by Beck, H. and Güntherodt, H.J. (Springer-Verlag, Berlin-Heidelberg-New York, 1983), p. 16.Google Scholar
25Ford, J. C., Budnick, J. I., Hines, W. A., and Hasegawa, R., J. Appl. Phys. 55(6), 2286 (1984).CrossRefGoogle Scholar
26Shinjo, T., Itoh, F., Takaki, H., Nakamura, Y., and Shinkazono, N., J. Phys. Soc. Jpn. 19, 1252 (1964).CrossRefGoogle Scholar
27Le Caër, G. and Dubois, J. M., Phys. Status Solidi A 64, 275 (1981).CrossRefGoogle Scholar
28Choo, W. K. and Kaplow, R., Metall. Trans. 8A, 417 (1977).CrossRefGoogle Scholar
29Dubois, J. M., These de Doctorat d' Etat, Nancy (1981).Google Scholar
30Franke, H., Herold, U., Köster, U., and Rosenberg, M., in Rapidly Quenched Metals III, edited by Cantor, B. (Chameleon, London, 1978), p. 155.Google Scholar
31Hanna, S. S., Heberle, J., Littlejohn, C., Perlow, G., Preston, R. S., and Vincent, D. H., Phys. Rev. Lett. 4, 177 (1960).CrossRefGoogle Scholar
32Gonser, U., Meechan, C. J., Muir, A. H., and Wiedersich, H., J. Appl. Phys. 34, 2373 (1963).CrossRefGoogle Scholar
33Murphy, K. A. and Hershkowitz, N., Phys. Rev. B 7, 23 (1973).CrossRefGoogle Scholar