Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T06:08:08.923Z Has data issue: false hasContentIssue false

On the growth and composition of conductive filaments on the surface of As–Se–Te bulk glassy semiconductors

Published online by Cambridge University Press:  31 January 2011

E. Márquez
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad de Cádiz, Apartado 40, Puerto Real, Cádiz, Spain
P. Villares
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad de Cádiz, Apartado 40, Puerto Real, Cádiz, Spain
R. Jiménez-Garay
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad de Cádiz, Apartado 40, Puerto Real, Cádiz, Spain
Get access

Abstract

A memory (lock-on) phenomenon was observed in the semiconducting glasses belonging to the As–Se–Te system, and this phenomenon was studied through electrical, calorimetric, and x-ray diffraction methods. The structural characteristics were also correlated to the time it takes to reach the memory state. The growth process in composition As0.40Se0.30Te0.30 exhibited a dependence on electrode polarity in such a way that it began at the positive electrode and finished at the negative one. The growth speed of the conductive filament was found to be approximately 22μm s−1. The crystalline nature of the lock-on filament was confirmed, and the peaks corresponding to the x-ray diffraction pattern of the surface of a sample of composition As0.45 Se0.10Te0.45, partially covered by filaments, correspond to monoclinic As2Te3. The memory effects found agree with those predicted through Ovshinsky's criterion, as the average coordination numbers for the noncrystalline structures of the alloys analyzed are 2.4 and 2.3, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ovshinsky, S. R., Phys. Rev. Lett. 21, 1450 (1968).CrossRefGoogle Scholar
2Ovshinsky, S. R., J. Non-Cryst. Solids 73, 395 (1985).CrossRefGoogle Scholar
3Adler, D., Schwartz, B. B., and Steele, M. C., Physical Properties of Amorphous Materials (Plenum, New York, 1985), p. 105.CrossRefGoogle Scholar
4Marquez, E., Villares, P., and Jiménez-Garay, R., J. Non-Cryst. Solids 74, 195 (1985).CrossRefGoogle Scholar
5Marquez, E., Villares, P., and Jimenez-Garay, R., Mater. Lett. 3, 503 (1985).CrossRefGoogle Scholar
6Uttecht, R., Stevenson, H., Sie, C. H., Griener, J. D., and Raghaven, K. S., J. Non-Cryst. Solids 2, 358 (1970).CrossRefGoogle Scholar
7Tanaka, K., Okada, Y., Sugi, M., Iizima, S., and Kikuchi, M., J. Non-Cryst. Solids 12, 100 (1973).CrossRefGoogle Scholar
8Marquez, E., Ph.D. thesis, University of Seville, 1986.Google Scholar
9Marquez, E., Esquivias, L., Villares, P., and Jiménez-Garay, R., Rev. Sci. Instrum. 56, 1262 (1985).CrossRefGoogle Scholar
10Marquez, E., Villares, P., and Jiménez-Garay, R., Phys. Status Solidi A 102, 741 (1987).CrossRefGoogle Scholar
11Owen, A. E., Robertson, J. M., and Main, C., J. Non-Cryst. Solids 32, 29 (1979).CrossRefGoogle Scholar
12Tanaka, K., Iizima, S., Sugi, S., and Kikuchi, M., Solid State Commun. 8, 75 (1970).CrossRefGoogle Scholar
13Okada, Y., Iizima, S., Sugi, M., Kikuchi, M., and Tanaka, K., J. Appl. Phys. 41, 5341 (1970).CrossRefGoogle Scholar
14Fritzshe, H. and Ovshinsky, S. R., J. Non-Cryst. Solids 4, 464 (1970).CrossRefGoogle Scholar
15Vazquez, J., Villares, P., and Jiménez-Garay, R., J. Non-Cryst. Solids 86, 251 (1986).CrossRefGoogle Scholar
16Vazquez, J., Villares, P., and Jimenez-Garay, R., Mater. Lett. 4, 171 (1986).CrossRefGoogle Scholar
17Vazquez, J., Márquez, E., Villares, P., and Jiménez-Garay, R., Mater. Lett 4, 360 (1986).CrossRefGoogle Scholar