Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-16T17:03:44.388Z Has data issue: false hasContentIssue false

On the grain-size-dependent elastic modulus of nanocrystalline materials with and without grain-boundary sliding

Published online by Cambridge University Press:  31 January 2011

P. Sharma
Affiliation:
General Electric Global Research Center, Niskayuna, New York 12309
S. Ganti
Affiliation:
General Electric Global Research Center, Niskayuna, New York 12309
Get access

Abstract

A closed-form model was proposed to evaluate the elastic properties of nanocrystalline materials as a function of grain size. Grain-boundary sliding, present in nanocrystalline materials even at relatively low temperatures, was included in the formulation. The proposed analytical model agrees reasonably well with the experimental results for nanocrystalline copper and palladium.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
Siegel, R.W., Nanostruct. Mater. 4, 121 (1994).CrossRefGoogle Scholar
Suryanarayana, C., Int. Mater. Rev. 40, 41 (1995).CrossRefGoogle Scholar
Gleiter, H., Acta Metall. 48, 1 (2000).Google Scholar
Sevillano, J.G., Arizcorreta, I.O., and Kubin, L.P., Mater. Sci. Eng. A A 309–310, 393 (2001).CrossRefGoogle Scholar
Fu, H.H., Benson, D.J., and Meyers, M.A., Acta Mater. 49, 2567 (2001).CrossRefGoogle Scholar
Takeuchi, S., Scripta Mater. 44, 1483 (2001).CrossRefGoogle Scholar
Bush, M.B., Mater. Sci. Eng. A A 161, 127 (1993).CrossRefGoogle Scholar
Kim, H.S., Suryanarayana, C., Kim, S.J., and Chun, B.S., Powder Metall. 41, 217 (1998).CrossRefGoogle Scholar
Kim, H.S. and Bush, M.B., Nanostruct. Mater. 11, 361 (1999).CrossRefGoogle Scholar
Swygenhoven, H. Van, Spaczer, M., and Caro, A., Acta Mater. 47, 561 (1999).Google Scholar
Conrad, H. and Narayan, J., Scripta Mater. 42, 1025 (2000).CrossRefGoogle Scholar
Chaim, R., J. Mater. Res. 12, 1828 (1997).CrossRefGoogle Scholar
Eshelby, J.D., Proc. R. Soc. London A 241, 376 (1957).Google Scholar
Benveniste, Y., Mech. Mater. 6, 147 (1987).CrossRefGoogle Scholar
Mura, T., Micro-Mechanics of Defects of Solids (Martinus Nijhoff, Dordrecht, The Netherlands, 1987).CrossRefGoogle Scholar
Huang, J.H., Mater. Sci. Eng. A A 315, 11 (2001).CrossRefGoogle Scholar
Sanders, P.G., Eastman, J.A., and Weertman, J.R., in Processing and Properties of Nanocrystalline Materials, edited by Suryanarayana, C., Singh, J., and Froes, F.H. (The Minerals, Metals and Materials Society, Warrendale, PA, 1996).Google Scholar
Polk, D.E., Giessen, B.C., and Gardner, F.S., Mater. Sci. Eng. 25, 309 (1976).CrossRefGoogle Scholar
Korn, D., Morsch, A., Berringer, R., Arnold, W., and Gleiter, H., J. Phys. 49, C5, Suppl. 10-769 (1988).Google Scholar
Weller, M., Diehl, J., and Schaefer, H.E., Philos. Mag. A 63, 527 (1991).CrossRefGoogle Scholar