Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-06T10:49:28.321Z Has data issue: false hasContentIssue false

On the elastic moduli of nanocrystalline Fe, Cu, Ni, and Cu–Ni alloys prepared by mechanical milling/alloying

Published online by Cambridge University Press:  03 March 2011

T.D. Shen
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907
C.C. Koch
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907
T.Y. Tsui
Affiliation:
Department of Materials Science, Rice University, Houston Texas 77251-1892
G.M. Pharr
Affiliation:
Department of Materials Science, Rice University, Houston Texas 77251-1892
Get access

Abstract

Young's moduli of nanocrystalline Fe, Cu, Ni, and Cu-Ni alloys prepared by mechanical milling/alloying have been measured by the nanoindentation technique. The results indicate that Young's moduli of nanocrystalline Cu, Ni, and Cu–Ni alloys with a grain size ranging from 17 to 26 nm are similar to those of the corresponding polycrystals. The dependence of Young's modulus of nanocrystalline Fe on grain size corresponds well to a theoretical prediction, which suggests that the change in the Young and shear moduli of nanocrystalline materials, free of porosity, with a grain size larger than about 4 nm, should be very limited (<10%). It is likely that reported large decreases in the Young and shear moduli of nanocrystalline materials prepared by gas-condensation/vacuum consolidation result from a relatively large volume fraction of pores.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
2Gleiter, H., in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, edited by Nastasi, M., Parkin, D.M., and Gleiter, H. (Kluwer Academic Publishers, Dordrecht/Boston/London, 1993), NATO ASI Series, Series E: Applied Sciences, Vol. 233, p. 1.Google Scholar
3Greer, A.L., ibid, p. 53.Google Scholar
4Aust, K.T., Erb, U., and Palumbo, G., ibid, p. 107.Google Scholar
5Embury, J. D. and Lahaie, D.J., ibid, p. 287.Google Scholar
6Siegel, R. W., ibid, p. 509.Google Scholar
7Gryaznov, V. G. and Trusov, L. I., Prog. Mater. Sci. 37, 289 (1993).CrossRefGoogle Scholar
8Hughes, G. D., Smith, S. D., Pande, C. S., Johnson, H. R., and Armstrong, R. W., Scripta Metall. 20, 93 (1986).CrossRefGoogle Scholar
9Jang, J.S.C. and Koch, C.C., Scripta Metall Mater. 24, 1599 (1990).CrossRefGoogle Scholar
10Nieman, G.W., Weertman, J. R., and Siegel, R.W., Scripta Metall. Mater. 24, 145 (1990).CrossRefGoogle Scholar
11Nieman, G.W., Weertman, J.R., and Siegel, R.W., J. Mater. Res. 6, 1012 (1991).CrossRefGoogle Scholar
12Nieman, G.W., Weertman, J.R., and Siegel, R.W., in Clusters and Cluster-Assembled Materials, edited by Averback, R. R., Bernholc, J., and Nelson, D. L. (Mater. Res. Soc. Symp. Proc. 206, Pittsburgh, PA, 1991), p. 493.Google Scholar
13Wang, K.Y., Shen, T.D., Quan, M.X., and Wei, W.D., J. Mater. Sci. Lett. 12, 1818 (1993).CrossRefGoogle Scholar
14Jang, J.S.C. and Koch, C.C., Scripta Metall. 22, 677 (1988).CrossRefGoogle Scholar
15McMahon, G. and Erb, U., Microstruc. Sci. 17, 447 (1989).Google Scholar
16Cho, Y.S. and Koch, C.C., Mater. Sci. Eng. A 141, 139 (1991).CrossRefGoogle Scholar
17Chang, H., Alstetter, C. J., and Averback, R. S., J. Mater. Res. 7, 2692 (1992).Google Scholar
18Kim, D. K. and Okazaki, K., Mater. Sci. Forum 88–90, 553 (1992).CrossRefGoogle Scholar
19Tong, H.Y., Wang, J.T., Ding, B.Z., Jiang, H.G., and Lu, K., J. Non-Cryst. Solids 150, 444 (1992).CrossRefGoogle Scholar
20Liu, X.D., Hu, Z.Q., and Ding, B.Z., NanoStru. Mater. 2, 545 (1993).CrossRefGoogle Scholar
21Tsakalakos, T. and Hilliard, J.E., J. Appl. Phys. 54, 734 (1983).CrossRefGoogle Scholar
22Baral, D., Ketterson, J.B., and Hilliard, J.E., J. Appl. Phys. 57, 1076 (1985).CrossRefGoogle Scholar
23Yang, W.M.C., Tsakalakos, T., and Hilliard, J.E., J. Appl. Phys. 48, 876 (1977).CrossRefGoogle Scholar
24Henein, G. and Hilliard, J.E., J. Appl. Phys. 54, 728 (1983).CrossRefGoogle Scholar
25Fartash, A., Fullerton, E.E., Schuller, I. K., Bobbin, S.E., Wagner, J.W., Cammarata, R. C., Kumar, S., and Grimsditch, M., Phys. Rev. B 44, 13 760 (1991-11).CrossRefGoogle Scholar
26Cammarata, R. C., Schlesinger, T. E., Kim, C., Qadri, S. B., and Edelstein, A. E., Appl. Phys. Lett. 56, 1862 (1990).CrossRefGoogle Scholar
27Moreau, A., Ketterson, J. B., and Mattson, J., Appl. Phys. Lett. 56, 1959 (1990).CrossRefGoogle Scholar
28Mintmire, J.W., Mater. Sci. Eng. A 126, 29 (1990).CrossRefGoogle Scholar
29Davis, B.M., Seidman, D.N., Moreau, A., Ketterson, J.B., Mattson, J., and Grimsditch, M., Phys. Rev. B 43, 9304 (1991-11).CrossRefGoogle Scholar
30Sasajima, Y., Taya, S., and Yamamoto, R., J. Magn. Magn. Mater. 126, 218 (1993).CrossRefGoogle Scholar
31Weller, M., Diehl, J., and Schaffer, H-E., Philos. Mag. 63, 527 (1991).CrossRefGoogle Scholar
32Korn, D., Morsch, A., Birringer, R., Arnold, W., and Gleiter, H., J. Phys. (Paris) 49, c5-375 (1988).CrossRefGoogle Scholar
33Mayo, M.J., Siegel, R.W., Narayanasamy, A., and Nix, W.D., J. Mater. Res. 5, 1073 (1990).CrossRefGoogle Scholar
34Krstic, V., Erb, U., and Palumbo, G., Scripta Metall. Mater. 29, 1501 (1993).CrossRefGoogle Scholar
35Karpe, N., Lapogian, G., Bøttiger, J., and Krog, J.P., Philos. Mag. B 71, 445 (1995).CrossRefGoogle Scholar
36Koch, C.C., NanoStru. Mater. 2, 109 (1993).CrossRefGoogle Scholar
37Shen, T. D. and Koch, C.C., Mater. Sci. Forum 179–181, 17 (1995).CrossRefGoogle Scholar
38Oliver, W. C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
39Williamson, G. K. and Hall, W. H., Acta Metall. 1, 22 (1953).CrossRefGoogle Scholar
40Wolfenden, A., Dynamic Elastic Modulus Measurements in Materials (ASTM, Philadelphia, PA, 1990), p. 135.CrossRefGoogle Scholar
41Metals Handbook, 10th ed., Vol. 2, Properties and Selection—Nonferrous Alloys and Special-Purpose Materials (ASM INTERNATIONAL, Materials Park, OH, 1990), pp. 265, 338, 437.Google Scholar
42Giri, A. K., Mater. Lett. 17, 353 (1993).CrossRefGoogle Scholar
43Boyer, R., Welsch, G., and Collings, E. W., Materials Properties Handbook: Titanium Alloys (ASM INTERNATIONAL, Materials Park, OH, 1994), p. 94.Google Scholar
44Palumbo, G., Thorpe, S.J., and Aust, K. T., Scripta Metall. Mater. 24, 1347 (1990).CrossRefGoogle Scholar
45Wong, L., Ostrandeer, D., Erb, U., Palumbo, G., and Aust, K.T., in Nanophases and Nanocrystalline Structures, edited by Shull, R. D. and Sanchez, J. M. (The Minerals, Metals & Materials Society, Warrendale, PA, 1994), p. 85.Google Scholar
46Masumoto, T. and Maddin, R., Mater. Sci. Eng. 19, 1 (1975).CrossRefGoogle Scholar
47Kluge, M.D., Wolf, D., Lutsko, J.F., and Phillpot, S.R., J. Appl. Phys. 67, 2370 (1990).CrossRefGoogle Scholar
48Paul, B., Trans. AIME 218, 36 (1960).Google Scholar
49Chen, Da, Mater. Sci. Eng. A 190, 193 (1995).CrossRefGoogle Scholar