Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T23:38:58.748Z Has data issue: false hasContentIssue false

Observations of order in Pd–Y solid solutions and in Pd7Y

Published online by Cambridge University Press:  29 June 2016

Y. Sakamoto
Affiliation:
Department of Materials Science and Engineering, Nagasaki University, Nagasaki 852, Japan
M. Yoshida
Affiliation:
Department of Materials Science and Engineering, Nagasaki University, Nagasaki 852, Japan
Ted. B. Flanagan
Affiliation:
Department of Chemistry, The University of Vermont, Burlington, Vermont 05405
Get access

Abstract

Electron microscopic observations, electrical resistivity, and lattice parameter measurements of annealed Pd-12.5 at. % Y alloy indicate the presence of long-range order in the form of a Pt7Cu superlattice. This is similar to the order found in Pd7Ce, which is also isomorphous with Pt7Cu. The order-disorder transformation temperature was found to be Tc = 783 ± 5 K. Evidence was found from resistivity measurements for the existence of an ordered structure in the hypostoichiometric alloys: Pd-10.0 at. % Y and Pd-8.0 at. % Y. The order-disorder transformation temperatures were lower than that for the stoichiometric alloy Pd7Y.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Loebich, O. Jr. and Raub, E.J. Less-Common Met. 30, 47 (1973).CrossRefGoogle Scholar
2Kuentzler, R. and Loebich, O., J. Less-Common Met. 106, 335 (1985).CrossRefGoogle Scholar
3Kuwano, N., Shiwaku, T., Tomokiyo, Y., and Eguchi, T., Jpn. J. Appl. Phys. 20, 1603 (1981).CrossRefGoogle Scholar
4Smith, D. A.Jones, I. P., and Harris, I. R.J. Mater. Sci. Lett. 1, 463 (1982).CrossRefGoogle Scholar
5Sakamoto, Y., Flanagan, T. B., and Kuji, T., Z. Phys. Chem. 143, 61 (1985).CrossRefGoogle Scholar
6Schneider, A. and Esch, U., Z. Elektrochem. 50, 290 (1944).Google Scholar
7Harris, I. R. and Norman, M., J. Less-Common Met. 15, 285 (1968).CrossRefGoogle Scholar
8Cotton, F. A. and Wilkinson, G., Advanced Inorganic Chemistry—A Comprehensive Text (Interscience, New York, 1966), 2nd ed.Google Scholar
9Thomson, J. R., J. Less-Common Met. 13, 307 (1967).CrossRefGoogle Scholar
10Sakamoto, Y., Hirata, S., and Nishikawa, H., J. Less-Common Met. 88, 387 (1982).CrossRefGoogle Scholar
11Hirst, J. R., Wise, M. L. H., Fort, D., Fan, J. P. G., and Harris, I. R., J. Less-Common Met. 49, 193 (1976).CrossRefGoogle Scholar
12Hughes, D. T., Evans, J., and Harris, I. R., J. Less-Common Met. 76, 119 (1980).CrossRefGoogle Scholar
13Hughes, D. T., Evans, J., and Harris, I. R., J. Less-Common Met. 74, 255 (1980).CrossRefGoogle Scholar
14Brooks, J., Loretto, M. H., and Harris, I. R., Met. Sci. 10, 397 (1976).CrossRefGoogle Scholar
15Fort, D. and Harris, I. R., J. Less-Common Met. 45, 247 (1976).CrossRefGoogle Scholar
16Nelson, J. P. and Riley, D. P., Proc. Phys. Soc. London 9 ,160 (1945).CrossRefGoogle Scholar
17Bradley, A. J. and Jay, A. H., J. Iron Steel Inst. London 125, 339 (1932).Google Scholar
18Taylor, A. and Hinton, K. G., J. Inst. Met. 81, 169 (19521953).Google Scholar