Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T23:39:25.871Z Has data issue: false hasContentIssue false

Nucleation and growth during the chemical vapor deposition of diamond on SiO2 substrates

Published online by Cambridge University Press:  03 March 2011

Janet Rankin
Affiliation:
Division of Engineering, Brown University, Providence, Rhode Island 02912
Rachel E. Boekenhauer
Affiliation:
Division of Engineering, Brown University, Providence, Rhode Island 02912
Roseann Csencsits
Affiliation:
Division of Engineering, Brown University, Providence, Rhode Island 02912
Yuzo Shigesato
Affiliation:
Division of Engineering, Brown University, Providence, Rhode Island 02912
Matthew W. Jacobson
Affiliation:
Division of Engineering, Brown University, Providence, Rhode Island 02912
Brian W. Sheldon
Affiliation:
Division of Engineering, Brown University, Providence, Rhode Island 02912
Get access

Abstract

The early stages of microwave-plasma assisted CVD of diamond on fused silica and silicon substrates were investigated. Nucleation densities on fused silica were somewhat lower than on silicon; however, the diamond growth rates on fused silica were faster. These results suggest that the substrate alters the plasma chemistry near the substrate. Transmission electron microscopy showed a relatively smooth interface between the diamond grains and the SiO2 surface. At low nucleation densities, the growth kinetics on both substrates were linear (i.e., the average feature size was proportional to the deposition time), which indicates that the growth kinetics were initially controlled by reaction(s) at the growing diamond surfaces. The transition to nonlinear growth kinetics observed at higher nucleation densities was probably caused by mass-transport limits.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yarbrough, W. A. and Messier, R., Science 247, 688 (1990).CrossRefGoogle Scholar
2Yarbrough, W. A., J. Am. Ceram. Soc. 75, 3179 (1992).CrossRefGoogle Scholar
3Liou, Y., Inspektor, A., Weimer, R., and Messier, R., Appl. Phys. Lett. 55, 631 (1989).CrossRefGoogle Scholar
4Pickrell, D. J., Zhu, W., Badzian, A. R., Newnham, R. E., and Messier, R., J. Mater. Res. 6, 1264 (1991).CrossRefGoogle Scholar
5Bauer, R. A., Sbrockey, N. M., and Brower, W. E. Jr., J. Mater. Res. 8, 2858 (1993).CrossRefGoogle Scholar
6Molinari, E., Polini, R., and Tomellini, M., Appl. Phys. Lett. 61, 1287 (1992).CrossRefGoogle Scholar
7Ravi, K. V., Koch, C. A., Hu, H. S., and Joshi, A., J. Mater. Res. 5, 2356 (1990).CrossRefGoogle Scholar
8Stoner, B. R., Ma, G-H. M., Wolter, S. D., and Glass, J. T., Phys. Rev. B 45, 11067 (1992).CrossRefGoogle Scholar
9Yugo, S., Kanai, T., Kimura, T., and Muto, T., Appl. Phys. Lett. 58, 1036 (1991).CrossRefGoogle Scholar
10Csencsits, R., Rankin, J., Boekenhauer, R. E., Kundmann, M. K., and Sheldon, B. W., in Evolution of Surface and Thin Film Microstructure, edited by Atwater, H. A., Chason, E., Grabow, M. L., and Lagally, M. G. (Mater. Res. Soc. Symp. Proc. 280, Pittsburgh, PA, 1993), p. 695.Google Scholar
11Sheldon, B. W., Csencsits, R., Rankin, J., Boekenhauer, R. E., and Shigesto, Y., J. Appl. Phys. (May 1994, in press).Google Scholar
12Chu, C. J., Bai, B. J., Komplin, N. J., Patterson, D. E., M.P. D'Evelyn, Hauge, R. H., and Margrave, J. L., in Novel Forms of Carbon, edited by Renschler, C. L., Pouch, J. J., and Cox, D. M. (Mater. Res. Soc. Symp. Proc. 270, Pittsburgh, PA, 1992), p. 341.Google Scholar
13Goodwin, D. G., J. Appl. Phys. 74, 6888 (1993).CrossRefGoogle Scholar
14Chang, C-P., Flamm, D. L., Ibbotson, D. E., and Mucha, J. A., J. Appl. Phys. 63, 1744 (1988).CrossRefGoogle Scholar
15Everson, M. P. and Tamor, M. A., J. Mater. Res. 7, 1438 (1992).CrossRefGoogle Scholar
16Molinari, E., Polini, R., Terranova, M. L., Ascarelli, P., and Fontana, S., J. Mater. Res. 7, 1778 (1992).CrossRefGoogle Scholar
17Rankin, J., Shigesato, Y., Boekenhauer, R. E., Csencsits, R., Paine, D. C., and Sheldon, B. W., in Novel Forms of Carbon, edited by Renschler, C. L., Pouch, J. J., and Cox, D. M. (Mater. Res. Soc. Symp. Proc. 270, Pittsburgh, PA, 1992), p. 317.Google Scholar
18Mehandru, S. P. and Anderson, A. B., Surf. Sci. 248, 369 (1991).CrossRefGoogle Scholar
19Iijima, S., Aikawa, Y., and Baba, K., Appl. Phys. Lett. 57, 2646 (1990).CrossRefGoogle Scholar
20Dennig, P. A. and Stevenson, D. A., Appl. Phys. Lett. 59, 1562 (1991).CrossRefGoogle Scholar
21Aoki, M., Ring, T. A., and Haggerty, J. S., Adv. Ceram. Mater. 2, 209212 (1987).CrossRefGoogle Scholar
22Joffreau, P. O., Haubner, R., and Lux, B., Int. J. Refract. Hard Met. 7, 186 (1988).Google Scholar
23Li, Z., Wang, L., Suzuki, T., Argoitia, A., Pirouz, P., and Angus, J. C., J. Appl. Phys. 73, 711 (1993).CrossRefGoogle Scholar
24BAdzian, A. R. and Badzian, T., Surf. Coat. Technol. 36, 283 (1988).CrossRefGoogle Scholar
25Lewis, B. and Anderson, J. C., Nucleation and Growth of Thin Films (Academic Press, London, 1978).Google Scholar