Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T11:59:59.706Z Has data issue: false hasContentIssue false

A nuclear magnetic resonance study of Al–Mn quasicrystals and related materials

Published online by Cambridge University Press:  31 January 2011

Keith R. Carduner
Affiliation:
Scientific Research Laboratories, Ford Motor Co., Dearborn, Michigan 48121
B. H. Suits
Affiliation:
Physics Department, Michigan Technological University, Houghton, Michigan 49931
J. A. DiVerdi
Affiliation:
Analytical, Physical, and Structural Chemistry Division, SmithKline and French Laboratories, Philadelphia, Pennsylvania 19101
Michael D. Murphy
Affiliation:
Laboratory for Research on the Structure of Matter and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
David White
Affiliation:
Laboratory for Research on the Structure of Matter and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
Get access

Abstract

Nuclear magnetic resonance (NMR) results are presented for several aluminum alloy samples prepared using the melt-spinning technique including orthorhombic Al6Mn, Al–Mn quasicrystals both with and without doping with Si and Ru, and a T-phase alloy of Al and Pt. With the exception of the orthorhombic material, all of the NMR spectra show a broad distribution of sites. No features unique to the quasicrystal phase are observed. For the orthorhombic material the quadrupole field parameters are found to be ∥VQ∥ − 1.0±0.1 MHz and η = 0.4±0.1.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Shechtman, D., Blech, I., Gratis, D., and Cahn, J. W., Phys. Rev. Lett. 53, 1951 (1984).CrossRefGoogle Scholar
2Levine, D. and Steinhardt, P. J., Phys. Rev. Lett. 53, 2477 (1984); See also, P. Kramer, Acta Crystallogr. A 38, 257 (1982).CrossRefGoogle Scholar
3Stevens, P. W. and Goldman, A. I., Phys. Rev. Lett. 56, 1168 (1986).CrossRefGoogle Scholar
4Swartzendruber, L. J., Shechtman, D., Bendersky, L., and Cahn, L., Phys. Rev. B 32, 1383 (1985).CrossRefGoogle Scholar
5Eibschutz, M., Chen, H. S., and Hauser, J. J., Phys. Rev. Lett. 56, 169 (1986).CrossRefGoogle Scholar
6Warren, W. W. Jr., Chen, H. S., and Hauser, J. J., Phys. Rev. B 32, 7614 (1985).CrossRefGoogle Scholar
7Rubinstein, M., Stauss, G. H., Phillips, T. E., Moorjani, K., and Bennet, L. H., J. Mater. Res. 1, 243 (1986).CrossRefGoogle Scholar
8Yasuoka, H., Soyama, A., Kimura, K., and Takeuchi, S., J. Phys. Soc. Jpn. 55, 1058 (1986).CrossRefGoogle Scholar
9Stern, E. A., Ma, Y., and Bouldin, C. E., Phys. Rev. Lett. 55, 2172 (1985).CrossRefGoogle Scholar
10Boyce, J. B., Mikkelsen, J. C., Bridges, F., and Egami, T., Phys. Rev. B 33, 7314 (1986).CrossRefGoogle Scholar
11Stauss, G. H., J. Chem. Phys. 40, 1988 (1964).CrossRefGoogle Scholar
12Boemberger, N. and Rowland, T. J., Acta Metall. 1, 731 (1953).CrossRefGoogle Scholar
13Baugher, J. F., Taylor, P. C., Oja, T., and Bray, P. J., J. Chem. Phys. 50, 4914 (1969).CrossRefGoogle Scholar
14Bancel, P. A., Heiney, P. A., Stevens, P. W., Goldman, A. I., and Horn, P. A., Phys. Rev. Lett. 54, 2422 (1985).CrossRefGoogle Scholar
15Nicol, A. D. I., Acta Crystallogr. 6, 285 (1953).CrossRefGoogle Scholar
16McHenry, M. E., Eberhart, M. E., O'Handley, R. C., and Johnson, K. H., Phys. Rev. Lett. 56, 81 (1986).CrossRefGoogle Scholar
17Warren, W. W. Jr., Sotier, S., and Brennert, G. F., Phys. Rev. B 30, 65 (1984).CrossRefGoogle Scholar
18Abragam, A., Principles of Nuclear Magnetism (Oxford U. P., New York, 1961), p. 237.Google Scholar
19See, for example, Chen, M. C., Ph.D. thesis, University of Illinois, 1982 (unpublished) and M. C. Chen and C. P. Slichter, Phys. Rev. B 27,278 (1983).Google Scholar