Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T01:03:25.699Z Has data issue: false hasContentIssue false

A novel route to ZnO/TiO2 heterojunction composite fibers

Published online by Cambridge University Press:  29 August 2012

Delong Li
Affiliation:
School of Physics and Technology and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan 430072, China
Xudong Jiang
Affiliation:
School of Physics and Technology and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan 430072, China
Yupeng Zhang
Affiliation:
School of Physics and Technology and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan 430072, China
Bin Zhang
Affiliation:
School of Physics and Technology and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan 430072, China
Chunxu Pan*
Affiliation:
School of Physics and Technology and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan 430072, China; and Center for Electron Microscopy, Wuhan University, Wuhan 430072, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

ZnO/TiO2 heterojunction composite fibers were prepared via a physical route, i.e., first electrospinning titanium dioxide (TiO2) fibers, then pulse plating zinc (Zn) on the fibers, and at last thermal treating the fibers. The morphologies, phase structures, and photocatalytic property of the composite fibers were characterized by using field-emission gun scanning electron microscope, x-ray diffractometer, high-resolution transmission electron microscope, and ultraviolet–visible spectrophotometer. It was found that a full or partial lattice coherent heterojunction was formed between the TiO2 fibers and zinc oxide (ZnO) particles, due to thermal treatment at 400 °C, which simultaneously resulted in the phase transformations including Zn to ZnO and amorphous TiO2 to anatase TiO2. The experimental results demonstrated that the photocatalytic activity of the composite fibers was improved and exhibited a value more than two times higher than that of TiO2 fibers.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Liu, G., Wang, L.Z., Yang, H.G., Cheng, H.M., and Lu, G.Q.: Titania-based photocatalysts—crystal growth, doping and heterostructuring. J. Mater. Chem. 20, 831 (2010).CrossRefGoogle Scholar
Hanaor, D.A.H. and Sorrell, C.C.: Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855 (2011).Google Scholar
Nam, S.H., Shim, H.S., Kim, Y.S., Dar, M.A., Kim, J.G., and Kim, W.B.: Ag or Au nanoparticle-embedded one-dimensional composite TiO2 nanofibers prepared via electrospinning for use in lithium-ion batteries. Appl. Mater. Inter. 2, 2046 (2010).Google Scholar
Archana, P.S., Jose, R., Jin, T.M., Vijila, C., Yusoff, M.M., and Ramakrishna, S.: Structural and electrical properties of Nb-doped anatase TiO2 nanowires by electrospinning. J. Am. Ceram. Soc. 93, 4096 (2010).Google Scholar
Jiang, X.D., Wang, Y.Q., and Pan, C.X.: High concentration substitutional N-doped TiO2 film: Preparation, characterization, and photocatalytic property. J. Am. Ceram. Soc. 94, 4078 (2011).Google Scholar
Ostermann, R., Li, D., Yin, Y.D., McCann, J.T., and Xia, Y.N.: V2O5 nanorods on TiO2 nanofibers: A new class of hierarchical nanostructures enabled by electrospinning and calcination. Nano Lett. 6, 1297 (2006).CrossRefGoogle ScholarPubMed
Liu, Z.Y., Sun, D.D., Guo, P., and Leckie, J.O.: An efficient biocomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. Nano Lett. 7, 1081 (2007).CrossRefGoogle Scholar
Akurati, K.K., Vital, A., Hany, R., Bommer, B., Graule, T., and Winterer, M.: One-step flame synthesis of SnO2/TiO2 composite nanoparticles for photocatalytic applications. Int. J. Photoenergy 7, 153 (2007).Google Scholar
Kanjwal, M.A., Barakat, N.A.M., Sheikh, F.A., and Kim, H.Y.: Electronic characterization and photocatalytic properties of TiO2/CdO electrospun nanofibers. J. Mater. Sci. 45, 1272 (2010).Google Scholar
Wang, H.Y., Yang, Y., Li, X., Li, J., and Wang, C.: Preparation and characterization of porous TiO2/ZnO composite nanofibers via electrospinning. Chin. Chem. Lett. 21, 1119 (2010).Google Scholar
Marcì, G., Augugliaro, V., López, M.J.L., Martín, C., Palmisano, L., Rives, V., Schiavello, M., Tilley, R.J.D., and Venezia, A.M.: Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. 2. Surface, bulk characterization, and 4-nitrophenol photodegradation in liquid-solid regime. J. Phys. Chem. B 105, 1033 (2001).CrossRefGoogle Scholar
Kansal, S.K., Singh, M., and Sud, D.: Studies on TiO2/ZnO photocatalysed degradation of lignin. J. Harzard. Mater. 153, 412 (2008).Google Scholar
Irimpan, L., Krishnan, B., Nampoori, V.P.N., and Radhakrishnan, P.: Luminescence tuning and enhanced nonlinear optical properties of nanocomposites of ZnO-TiO2. J. Colloid Interf. Sci. 324, 99 (2008).Google Scholar
Kim, D.W., Lee, S., Jung, H.S., Kim, J.Y., Kim, J., Shin, H., and Hong, K.S.: Effect of heterojunction on photoelectrocatalytic properties of ZnO-TiO2 films. Inter. J. Hydrogen Energy 32, 3137 (2007).Google Scholar
Zhang, Z.H., Yuan, Y., Fang, Y.J., Liang, L.H., Ding, H.C., and Jin, L.T.: Preparation of photocatalytic nano-ZnO/TiO2 film and application for determination of chemical oxygen demand. Talanta 73, 523 (2007).Google Scholar
Wang, N., Li, X.Y., Wang, Y.X., Hou, Y., Zou, X.J., and Chen, G.H.: Synthesis of ZnO/TiO2 nanotube composite film by a two-step route. Mater. Lett. 62, 3691 (2008).Google Scholar
Zhang, Z., Yuan, Y., Liang, L.H., Cheng, Y.X., Shi, G.Y., and Jin, L.T.: Preparation and photoelectrocatalytic activity of ZnO nanorods embedded in highly ordered TiO2 nanotube arrays electrode for azo dye degradation. J. Harzard. Mater. 158, 517 (2008).CrossRefGoogle ScholarPubMed
Wang, N., Sun, C.H., Zhao, Y., Zhao, S.Y., Chen, P., and Jiang, L.: Fabrication of three-dimensional ZnO/TiO2 heteroarchitectures via a solution process. J. Mater. Chem. 18, 3909 (2008).Google Scholar
Liu, R.L., Ye, H.Y., Xiong, X.P., and Liu, H.Q.: Fabrication of TiO2/ZnO composite nanofibers by electrospinning and their photocatalytic property. Mater. Chem. Phys. 121, 432 (2010).Google Scholar
Kanjwal, M.A., Barakat, N.A.M., Sheikh, F.A., Park, S.J., and Kim, H.Y.: Photocatalytic activity of ZnO-TiO2 hierarchical nanostructure prepared by combined electrospinning and hydrothermal techniques. Macromol. Res. 18, 233. (2010).Google Scholar
Fragal, M.E., Cacciotti, I., Aleeva, Y., Nigro, R.L., Bianco, A., Malandrino, G., Spinella, C., Pezzotti, G., and Gusmano, G.: Core-shell Zn-doped TiO2-ZnO nanofibers fabricated via a combination of electrospinning and metal-organic chemical vapour deposition. CrystEngComm 12, 3858 (2010).Google Scholar
Li, D. and Xia, Y.N.: Fabrication of titania nanofibers by electrospinning. Nano Lett. 3, 555 (2003).Google Scholar
Teo, W.E., Inai, R., and Ramakrishna, S.: Technological advances in electrospinning of nanofibers. Sci. Technol. Adv. Mater. 12, 013002 (2011).Google Scholar
Mohan, S., Ravindran, V., Subramanian, B., and Saravanan, G.: Electrodeposition of zinc-nickel alloy by pulse plating using non-cyanide bath. Trans. Inst. Met. Finish. 87, 85 (2009).CrossRefGoogle Scholar
Yu, W. and Pan, C.X.: Low temperature thermal oxidation synthesis of ZnO nanoneedles and the growth mechanism. Mater. Chem. Phys. 115, 74 (2009).Google Scholar
Hirakawa, T. and Nosaka, Y.: Properties of O2·- and OH· formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions. Langmuir 18, 3247 (2002).Google Scholar
Xu, Y. and Schoonen, M.A.A.: The absolute energy position of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85, 543 (2000).Google Scholar
Butler, M.A.: Photoelectrolysis and physical properties of the semiconducting electrode WO2. J. Appl. Phys. 48, 1914 (1977).CrossRefGoogle Scholar
Burova, L., Petukhov, D.I., Eliseev, A., Lukashin, A., and Tretyakov, Yu.D.: Preparation and properties of ZnO nanoparticles in the mesoporous silica matrix. Superlattice Microst. 39, 257266 (2006).Google Scholar
Wan, L., Li, J., Feng, J., Sunb, W., and Mao, Z.: Anatase TiO2 films with 2.2 eV band gap prepared by micro-arc oxidation. Mater. Sci. Eng., B 139, 216220 (2007).Google Scholar