Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T11:04:20.235Z Has data issue: false hasContentIssue false

Novel pot-shaped carbon nanomaterial synthesized in a submarine-style substrate heating CVD method

Published online by Cambridge University Press:  13 January 2016

Hiroyuki Yokoi*
Affiliation:
Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
Kazuto Hatakeyama
Affiliation:
Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
Takaaki Taniguchi
Affiliation:
Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
Michio Koinuma
Affiliation:
Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
Masahiro Hara
Affiliation:
Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
Yasumichi Matsumoto
Affiliation:
Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We have developed a new synthesis method that includes a chemical vapor deposition process in a chamber settled in organic liquid, and applied its nonequilibrium reaction field to the development of novel carbon nanomaterials. In the synthesis at 1110–1120 K, using graphene oxide as a catalyst support, iron acetate and cobalt acetate as catalyst precursors, and 2-propanol as a carbon source as well as the organic liquid, we succeeded to create carbon nanofiber composed of novel pot-shaped units, named carbon nanopot. A carbon nanopot has a complex and regular nanostructure consisting of several parts made of different layer numbers of graphene and a deep hollow space. Dense graphene edges, hydroxylated presumably, are localized around its closed end. The typical size of a carbon nanopot was 20–40 nm in outer diameter, 5–30 nm in inner diameter, and 100–200 nm in length. A growth model of carbon nanopot and its applications are proposed.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Suarez-Martinez, I., Grobert, N., and Ewels, C.P.: Encyclopedia of carbon nanoforms. In Advances in Carbon Nanomaterials: Science and Applications, Tagmatarchis, N. ed.; Pan Stanford Publishing: Singapore, 2012; p. 1.Google Scholar
Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., and Smalley, R.E.: C60: Buckminsterfullerene. Nature 318, 162 (1985).Google Scholar
Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).Google Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., and Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005).Google Scholar
Saito, Y. and Yoshikawa, T.: Bamboo-shaped carbon tube filled partially with nickel. J. Cryst. Growth 134, 154 (1993).Google Scholar
Endo, M., Kim, Y.A., Hayashi, T., Fukai, Y., Oshida, K., Terrones, M., Yanagisawa, T., Higaki, S., and Dresselhaus, M.S.: Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl. Phys. Lett. 80, 1267 (2002).Google Scholar
Ting, J-M. and Lan, J.B.C.: Beaded carbon tubes. Appl. Phys. Lett. 75, 3309 (1999).Google Scholar
Okuno, H., Grivei, E., Fabry, F., Gruenberger, T.M., Gonzalez-Aguilar, J., Palnichenko, A., Fulcheri, L., Probst, N., and Charlier, J-C.: Synthesis of carbon nanotubes and nano-necklaces by thermal plasma process. Carbon 42, 2543 (2004).Google Scholar
Ma, X., Wang, E.G., Tilley, R.D., Jefferson, D.A., and Zhou, W.: Size-controlled short nanobells: Growth and formation mechanism. Appl. Phys. Lett. 77, 4136 (2000).Google Scholar
Zhang, M., Nakayama, Y., and Pan, L.: Synthesis of carbon tubule nanocoils in high yield using iron-coated indium tin oxide as catalyst. Jpn. J. Appl. Phys. 39, L1242 (2000).Google Scholar
Saito, Y., Inagaki, M., Shinohara, H., Nagashima, H., Ohkohchi, M., and Ando, Y.: Yield of fullerenes generated by contact arc method under He and Ar: Dependence on gas pressure. Chem. Phys. Lett. 200, 643 (1992).Google Scholar
Miyata, Y., Kamon, K., Ohashi, K., Kitaura, R., Yoshimura, M., and Shinohara, H.: A simple alcohol-chemical vapor deposition synthesis of single-layer graphenes using flash cooling. Appl. Phys. Lett. 96, 263105 (2010).Google Scholar
Nakagawa, K., Nishitani-Gamo, M., Ogawa, K., and Ando, T.: Catalytic growth of carbon nanofilament in liquid hydrocarbon. Catal. Lett. 101, 191 (2005).Google Scholar
Dreyer, D.R., Park, S., Bielawski, C.W., and Ruoff, R.S.: The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228 (2010).Google Scholar
Kamat, P.V.: Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J. Phys. Chem. Lett. 1, 520 (2010).Google Scholar
Zhang, L.L., Xiong, Z., and Zhao, X.S.: Pillaring chemically exfoliated graphene oxide with carbon nanotubes for photocatalytic degradation of dyes under visible light irradiation. ACS Nano 4, 7030 (2010).Google Scholar
Mukhopadhyay, K., Koshio, A., Tanaka, N., and Shinohara, H.: A simple and novel way to synthesize aligned nanotube bundles at low temperature. Jpn. J. Appl. Phys. 37, L1257 (1998).Google Scholar
Zhao, Y., Tang, Y., Chen, Y., and Star, A.: Corking carbon nanotube cups with gold nanoparticles. ACS Nano 6, 6912 (2012).Google Scholar
Kumar, M.: Carbon nanotube synthesis and growth mechanism. In Carbon Nanotubes—Synthesis, Characterization, Applications, Yellampalli, S., ed. (Rijeka, Croatia: InTech, 2011); p. 147.Google Scholar
Davis, W.R., Slawson, R.J., and Rigby, G.R.: An unusual form of carbon. Nature 171, 756 (1953).Google Scholar
Baker, R.T.K. and Waite, R.J.: Formation of carbonaceous deposits from the platinum-iron catalyzed decomposition of acetylene. J. Catal. 37, 101 (1975).Google Scholar
Baker, R.T.K., Barber, M.A., Harris, P.S., Feates, F.S., and Waite, R.J.: Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal. 26, 51 (1972).Google Scholar
Homma, Y., Kobayashi, Y., Ogino, T., Takagi, D., Ito, R., Jung, Y.J., and Ajayan, P.M.: Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition. J. Phys. Chem. B 107, 12161 (2003).Google Scholar
Baker, R.T.K., Harris, P.S., Thomas, R.B., and Waite, R.J.: Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J. Catal. 30, 86 (1973).Google Scholar
Tibbetts, G.G.: Why are carbon filaments tubular? J. Cryst. Growth 66, 632 (1984).CrossRefGoogle Scholar
Baird, T., Fryer, J.R., and Grant, B.: Carbon formation on iron and nickel foils by hydrocarbon pyrolysis—reactions at 700 °C. Carbon 12, 591 (1974).Google Scholar
Oberlin, A., Endo, M., and Koyama, T.: Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 32, 335 (1976).CrossRefGoogle Scholar
Helveg, S., López-Cartes, C., Sehested, J., Hansen, P.L., Clausen, B.S., Rostrup-Nielsen, J.R., Abild-Pedersen, F., and Nørskov, J.K.: Atomic-scale imaging of carbon nanofibre growth. Nature 427, 426 (2004).Google Scholar
Hofmann, S., Sharma, R., Ducati, C., Du, G., Mattevi, C., Cepek, C., Cantoro, M., Pisana, S., Parvez, A., Cervantes-Sodi, F., Ferrari, A.C., Dunin-Borkowski, R., Lizzit, S., Petaccia, L., Goldoni, A., and Robertson, J.: In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett. 7, 602 (2007).Google Scholar
Yoshida, H., Takeda, S., Uchiyama, T., Kohno, H., and Homma, Y.: Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett. 8, 2082 (2008).Google Scholar
Hummers, W.S. Jr. and Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).Google Scholar
Mukhopadhyay, K., Koshio, A., Sugai, T., Tanaka, N., Shinohara, H., Konya, Z., and Nagy, J.B.: Bulk production of quasi-aligned carbon nanotube bundles by the catalytic chemical vapour deposition (CCVD) method. Chem. Phys. Lett. 303, 117 (1999).Google Scholar
Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S., and Kohno, M.: Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem. Phys. Lett. 360, 229 (2002).Google Scholar
Tuinstra, F. and Koenig, J.L.: Raman spectrum of graphite. J. Chem. Phys. 53, 1126 (1970).CrossRefGoogle Scholar
Cançado, L.G., Jorio, A., and Pimenta, M.A.: Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size. Phys. Rev. B 76, 064304 (2007).Google Scholar
Koinuma, M., Tateishi, H., Hatakeyama, K., Miyamoto, S., Ogata, C., Funatsu, A., Taniguchi, T., and Matsumoto, Y.: Analysis of reduced graphene oxides by X-ray photoelectron spectroscopy and electrochemical capacitance. Chem. Lett. 42, 924 (2013).Google Scholar
Lee, Y.T., Park, J., Choi, Y.S., Ryu, H., and Lee, H.J.: Temperature-dependent growth of vertically aligned carbon nanotubes in the range 800–1100 °C. J. Phys. Chem. B 106, 7614 (2002).Google Scholar
Liu, G-J., Fan, L-Q., Yu, F-D., Wu, J-H., Liu, L., Qiu, Z-Y., and Liu, Q.: Facile one-step hydrothermal synthesis of reduced graphene oxide/Co3O4 composites for supercapacitors. J. Mater. Sci. 48, 8463 (2013).Google Scholar
Kim, M.S., Rodriguez, N.M., and Baker, R.T.K.: The interplay between sulfur adsorption and carbon deposition on cobalt catalysts. J. Catal. 143, 449 (1993).Google Scholar
Tibbetts, G.G., Bernardo, C.A., Gorkiewicz, D.W., and Alig, R.L.: Role of sulfur in the production of carbon fibers in the vapor phase. Carbon 32, 569 (1994).Google Scholar