Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T20:58:57.260Z Has data issue: false hasContentIssue false

Novel Critical Temperature Resistor of Sintered Ni–Fe–O Nanosized Powders

Published online by Cambridge University Press:  03 March 2011

H. Suematsu*
Affiliation:
Extreme Energy-Density Research Institute, Nagaoka University of Technology, Nagaoka 940-2188, Japan
K. Ishizaka
Affiliation:
Extreme Energy-Density Research Institute, Nagaoka University of Technology, Nagaoka 940-2188, Japan
Y. Kinemuchi
Affiliation:
Extreme Energy-Density Research Institute, Nagaoka University of Technology, Nagaoka 940-2188, Japan
T. Suzuki
Affiliation:
Extreme Energy-Density Research Institute, Nagaoka University of Technology, Nagaoka 940-2188, Japan
W. Jiang
Affiliation:
Extreme Energy-Density Research Institute, Nagaoka University of Technology, Nagaoka 940-2188, Japan
K. Yatsui
Affiliation:
Extreme Energy-Density Research Institute, Nagaoka University of Technology, Nagaoka 940-2188, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nanosized powders of Ni–Fe–O were synthesized by a pulsed wire discharge method and sintered at 600 °C for 1 h in air. Abrupt electrical resistivity changes were observed in the temperature dependence of resistivity for the sintered Ni–Fe–O powders above 203 °C. Similar resistivity curves, which had been observed in V–O samples and had been used for the critical temperature resistors, had never been reported in Ni–Fe–O samples. Possible mechanisms to explain the resistivity change in NiFe2O4, including order-disorder transition, semiconductor-metal transition, and surface spin pinning, are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Verwey, E.J.W.: Nature. 144, 327 (1939).CrossRefGoogle Scholar
2Verwey, E.J., Haayman, P.W. and Romeijn, F.C.: J. Chem. Phys. 15, 181 (1947).CrossRefGoogle Scholar
3Jiang, W. and Yatsui, K.: IEEE Trans. Plasma Sci. 26, 1498 (1998).CrossRefGoogle Scholar
4Kinemuchi, Y., Suzuki, T., Jiang, W. and Yatsui, K.: J. Am. Ceram. Soc. 84, 2144 (2001).CrossRefGoogle Scholar
5Sangurai, C., Kinemuchi, Y., Suzuki, T., Jiang, W. and Yatsui, K.: Jpn. J. Appl. Phys. 40, 1070 (2001).CrossRefGoogle Scholar
6Kinemuchi, Y., Ishizaka, K., Suematsu, H., Jiang, W. and Yatsui, K.: Thin Solid Films. 407, 109 (2002).CrossRefGoogle Scholar
7Williams, D.B. and Carter, C.B.: Transmission Electron Microscopy, Basic I (Plenum Press, New York, 1996), pp. 599600CrossRefGoogle Scholar
8Futaki, H.: Jpn. J. Appl. Phys. 4, 28 (1965).CrossRefGoogle Scholar
9Whall, T.E., Salerno, N., Mirza, K. and Brabers, V.A.M.: Adv. Ceram. 15, 341 (1985).Google Scholar
10Fayek, M.K., Mostafa, M.F., Sayedahmed, F., Ata-Allah, S.S. and Kaiser, M.: J. Magn. Magn. Mater. 210, 189 (2000).CrossRefGoogle Scholar
11Whall, T.E., Yeung, K.K., Proykova, T.G. and Brabers, V.A.M.: Philos. Mag. 50, 689 (1984).CrossRefGoogle Scholar
12Kuiper, A.J. and Brabers, V.A.M.: Phys. Rev. B. 14, 1401 (1976).CrossRefGoogle Scholar
13Anderson, P.W.: Phys. Rev. 102, 1008 (1956).CrossRefGoogle Scholar
14Shapiro, S.M., Iizumi, M. and Shirane, G.: Phys. Rev. B. 14, 200 (1976).CrossRefGoogle Scholar
15Ma, Y.G., Jin, M.Z., Liu, M.L., Chen, C., Sui, Y., Tian, Y., Zhang, G.J. and Jia, Y.Q.: Mater. Chem. Phys. 65, 79 (2000).CrossRefGoogle Scholar
16Berkowitz, A.E., Lahut, J.A., Jacobs, I.S., Levinson, L.M. and Forester, D.W.: Phys. Rev. Lett. 34, 594 (1975).CrossRefGoogle Scholar
17Kodama, R.H., Berkowitz, A.E., McNiff, J.E.J. and Foner, S.: Phys. Rev. Lett. 77, 394 (1996).CrossRefGoogle Scholar