Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T01:17:43.767Z Has data issue: false hasContentIssue false

A novel approach for identifying and synthesizing highdielectric materials

Published online by Cambridge University Press:  31 January 2011

J.-H. Park
Affiliation:
CHiPR, Department of Chemistry, State University of New York, Stony Brook, New York 11794–2100
J. B. Parise
Affiliation:
CHiPR, Department of Geosciences, State University of New York, Stony Brook, New York 11794–2100
P. M. Woodward
Affiliation:
Department of Chemistry, The Ohio State University, Columbus, Ohio 43210–1185
I. Lubomirsky
Affiliation:
Department of Electrical Engineering (IV), University of California, Los Angeles, California 90024
O. Stafsudd
Affiliation:
Department of Electrical Engineering (IV), University of California, Los Angeles, California 90024
Get access

Abstract

Modern telecommunications require materials with high dielectric constants (κ). The number of suitable elements ultimately limits one approach to the discovery of new materials, targeting compositions with high atomic polarizabilities (α). By decreasing the molar volume of compositions with high α, however, we anticipated dramatic increases in κ and demonstrated that this approach works. The quenched high-pressure perovskite polymorph of Na2MTeO6 (M = Ti, Sn) showed a twofold increase in κ, compared to the ilmenite form. This result suggested the highest values of κ occur for compositions with high α, which form quenchable compounds at high pressures and temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Roberts, R., Phys. Rev. 81, 865 (1951);CrossRefGoogle Scholar
Lasaga, A.C. and Cygan, R.T., Am. Mineral. 67, 328 (1982).Google Scholar
2.Shannon, R.D., J. Appl. Phys. 73, 348 (1993).CrossRefGoogle Scholar
3.Kawashima, S., Nishida, N., Ueda, I., and Ouchi, H., J. Am. Ceram. Soc. 66, 421 (1983);CrossRefGoogle Scholar
Wakino, K., Minai, K., and Tamura, H., J. Appl. Phys. 67, 278 (1984);Google Scholar
Colla, E.L., David, N., Rau, C., and Setter, N., Ferroelectrics 184, 151 (1996).CrossRefGoogle Scholar
4.Isaacs, E.D., Marcus, M., Aeppli, G., Xiang, X.D., Sun, X.D., Schultz, P., Kao, H.K., Cargill, G.S., and Haushalter, R., Appl. Phys. Lett. 73, 1820 (1998);CrossRefGoogle Scholar
Takeuchi, I., Chung, H., Gao, C., Schultz, P.G., Xiang, X.D., Sharma, R.P., Downes, M.J., and Venkatesan, T., Appl. Phys. Lett. 73, 894 (1998);CrossRefGoogle Scholar
Senkan, S.M., Nature 394, 350 (1998);CrossRefGoogle Scholar
Chang, H., Gao, C., Takeuchi, I., Yoo, Y., Wang, J., Schultz, P.G., Xiang, X.D., Sharma, R.P., Downes, M., and Venkatesan, T., Appl. Phys. Lett. 72, 2185 (1998).CrossRefGoogle Scholar
5.Havinga, E. and Bosman, A.J., Phys. Rev. 140A, 292 (1965).CrossRefGoogle Scholar
6.Park, J.-H., Woodward, P.M., and Parise, J.B., Chem. Mater. 10, 3092 (1998).CrossRefGoogle Scholar
7.Woodward, P.M., Sleight, A.W., Du, L-S., and Grey, C.P. (1999, in press).Google Scholar
8.Glazer, A.M., Acta Crystallogr. B28, 3384 (1972);CrossRefGoogle Scholar
Woodward, P.M., Acta Crystallogr. B53, 32 (1997).CrossRefGoogle Scholar
9.Anderson, M.T., Greenwood, K.B., Taylor, G.A., and Poeppelmeier, K.R., Prog. Solid State Chem. 22, 197 (1993).CrossRefGoogle Scholar
10.Grzechnik, A., McMillan, P.F., and Petuskey, W., in Ion-Solid Interactions for Materials Modification and Processing, edited by Poker, D.B., Ila, D., Cheng, Y-T., Harriott, L.R., and Sigmon, T.W. (Mater. Res. Soc. Symp. Proc. 396, Pittsburgh, PA, 1996), p. 501.Google Scholar
11.Negas, T., Yeager, G., Bell, S., and Amren, R., in NIST Special Publication 804 Chemistry of Electronic Ceramic Materials, edited by Davies, P.K. and Roth, R.S. (NIST, Gaithersburg, MD, 1990), p. 21.Google Scholar
12.Choisnet, J., Rulmont, A., Tarte, P., J. Solid State Chem. 75, 124 (1988).CrossRefGoogle Scholar