Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T21:13:41.785Z Has data issue: false hasContentIssue false

Non-template synthesis of titania hollow spheres and their thermal stability

Published online by Cambridge University Press:  01 April 2005

Xin M. Wang
Affiliation:
Manchester Materials Science Centre, University of Manchester, Manchester M1 7HS, United Kingdom
Ping Xiao*
Affiliation:
Manchester Materials Science Centre, University of Manchester, Manchester M1 7HS, United Kingdom
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Uniform and thermally stable spherical titania particles with hollow interiors were directly prepared by a novel solvothermal precipitation of TiCl4 in isopropanol without templates or shape-controller reagents. An average particle size of 700 nm to 1 μm was obtained. The hollow spheres consisted of pure anatase phase nanocrystals with an estimated crystallite size of 12–15 nm. Upon heating, the pure anatase phase was retained for temperatures up to 800 °C, which suggested that the spherical structure contributed to phase stability. This method is a promising process for industrial-scale preparation of titania hollow spheres.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wilcox, D.L. Sr., Berg, M., Bernat, T., Kellerman, D., Cochran, J.K. Jr., and and Microspheres, : in Hollow Solid Spheres Science and Technology Associated with Their Fabrication and Application, edited by Wilcox, D.L. Sr., Berg, M., Bernat, T., Kellerman, D., and Cochran, J.K. Jr. (Mater. Res. Soc. Symp. Proc. 372, Pittsburgh, PA, 1995).Google Scholar
2. Caruso, F.: Nanoengineering of particle surfaces. Adv. Mater. 13, 11 (2001).3.0.CO;2-N>CrossRefGoogle Scholar
3. Schartl, W.: Crosslinked spherical nanoparticles with core-shell topology. Adv. Mater. 12, 1899 (2000).3.0.CO;2-T>CrossRefGoogle Scholar
4. Caruso, F., Caruso, R.A. and Mohwald, H.: Production of hollow microspheres from nanostructured composite particles. Chem. Mater. 11, 3309 (1999).CrossRefGoogle Scholar
5. Caruso, R.A., Susha, A. and Caruso, F.: Multilayered titania, silica and laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres. Chem. Mater. 13, 400 (2001).CrossRefGoogle Scholar
6. Zhong, Z., Yin, Y., Gates, B. and Xia, Y.: Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads. Adv. Mater. 12, 206 (2000).3.0.CO;2-5>CrossRefGoogle Scholar
7. Yang, Z., Niu, Z., Lu, Y., Hu, Z. and Han, C.C.: Templated synthesis of inorganic hollow spheres with a tunable cavity size onto core-shell gel particles. Angew. Chem. Int. Ed. Engl. 42, 1943 (2003).CrossRefGoogle ScholarPubMed
8. Liang, Z., Susha, A. and Caruso, F.: Gold nanoparticle-based core-shell and hollow spheres and ordered assemblies thereof. Chem. Mater. 15, 3176 (2003).CrossRefGoogle Scholar
9. Sertchook, H. and Avnir, D.: Submicron silica/polystyrene composite particles prepared by a one-step sol-gel process. Chem. Mater. 15, 1690 (2003).CrossRefGoogle Scholar
10. Collins, A.M., Spickermann, C. and Mann, S.: Synthesis of titania hollow microspheres using non-aqueous emulsions. J. Mater. Chem. 13, 1112 (2003).CrossRefGoogle Scholar
11. Hubert, D.H.W., Jung, M., Frederik, P.M., Bomans, P.H.H., Meuldijk, J. and German, A.L.: Vesicle-directed growth of silica. Adv. Mater. 12, 1286 (2000).3.0.CO;2-7>CrossRefGoogle Scholar
12. Sims, S.D., Walsh, D. and Mann, S.: Morphosynthesis of macroporous silica frameworks in bicontinuous microemulsions. Adv. Mater. 10, 151 (1998).3.0.CO;2-U>CrossRefGoogle Scholar
13. Lei, Z., Li, J., Ke, Y., Zhang, Y., Zhang, H., Li, F. and Xing, J.: Two-step templating route to macroporous or hollow sphere oxides. J. Mater. Chem. 11, 2930 (2001).CrossRefGoogle Scholar
14. Guo, C-W., Cao, Y., Xie, S-H., Dai, W-L. and Fan, K-N.: Fabrication of mesoporous core-shell structured titania microspheres with hollow interiors. Chem. Commun. 7, 700 (2003).CrossRefGoogle Scholar
15. Cheng, H., Ma, J., Zhao, Z. and Qi, L.: Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem. Mater. 7, 663 (1995).CrossRefGoogle Scholar
16. Yang, J., Mei, S. and Ferreira, J.M.F.: Hydrothermal synthesis of well-dispersed TiO2 nanocrystals. J. Mater. Res. 17, 2197 (2002).CrossRefGoogle Scholar
17. Wang, C., Deng, Z-X., Zhang, G., Fan, S. and Li, Y.: Synthesis of nanocrystalline TiO2 in alcohols. Powder Technol. 125, 39 (2002).CrossRefGoogle Scholar
18. Arnal, P., Corriu, R.J.P., Leclercq, D., Mutin, P.H. and Vioux, A.: A solution chemistry study of nonhydrolytic sol-gel routes to titania. Chem. Mater. 9, 694 (1997).CrossRefGoogle Scholar
19. Hu, Y., Tsai, H.L. and Huang, C.L.: Phase transformation of precipitated TiO2 nanoparticles. Mater. Sci. Eng. A 344, 209 (2003).CrossRefGoogle Scholar
20. Perry, R.H. and Green, D.W.: Perry's Chemical Engineers' Handbook, 7th ed. (McGraw-Hill, New York, 1997).Google Scholar