Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T19:41:42.323Z Has data issue: false hasContentIssue false

Ni/YBa2Cu3O7−x and Ni/Bi2Sr2Ca0.8Y0.2Cu2Ox interface formation: Reactivity, segregation, and chemical trapping

Published online by Cambridge University Press:  31 January 2011

H.M. Meyer III
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
D.M. Hill
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
J.H. Weaver
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
K.C. Goretta
Affiliation:
Argonne National Laboratory, Argonne, Illinois 60439
U. Balachandran
Affiliation:
Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

Interfaces formed by condensing Ni atoms onto YBa2Cu3O7−x (Y-123) and Bi2Sr2Ca0.8Y0.2Cu2Ox (Bi-2212) have been studied with x-ray photoelectron spectroscopy. For both Y-123 and Bi-2212, the Ni 2p3/2 and O 1s core level features indicate Ni–O reactions and changes in the Cu 2p3/2 emission that reflect reduction from nominal Cu2+ to Cu1+ oxidation states. Ni deposition onto Bi-2212 also reduces Bi–O bonding and releases Bi atoms. For Ni/Y-123, analysis of emission intensities as a function of coverage shows that O and Ba intermix in the growing metal overlayer but that Cu is trapped at the buried interface. For Ni/Bi-2212, similar analysis shows O and Bi intermixing but less effective Cu trapping.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Gallagher, J., Solid State Technology 32, 151 (1989).Google Scholar
2Meyer, H. M., III, Hill, D. M., Weaver, J. H., Capone, D. W., and Goretta, K. C., Phys. Rev. B 38, 6500 (1988); H. M. Meyer, III, J. H. Weaver, and K. C. Goretta, J. Appl. Phys. 67, 1995 (1990); H. M. Meyer, III, D. M. Hill, S. G. Anderson, J. H. Weaver, and D. W. Capone, II, Appl. Phys. Lett. 51, 1750 (1987).CrossRefGoogle Scholar
3Hill, D. M., Gao, Y., Meyer, H. M., III, Wagener, T. J., Weaver, J. H., and Capone, D. W., II, Phys. Rev. B 37, 511 (1988); D. M. Hill, H. M. Meyer, III, J. H. Weaver, C. F. Gallo, and K. C. Goretta, Phys. Rev. B 38, 11331 (1988).CrossRefGoogle Scholar
4Meyer, H. M., III, Hill, D. M., Weaver, J. H., Nelson, D. L., and Goretta, K. C., Appl. Phys. Lett. 53, 1004 (1988).CrossRefGoogle Scholar
5Meyer, H. M., III, Hill, D. M., Wagener, T. J., Weaver, J. H., Gallo, C. F., and Goretta, K. C., J. Appl. Phys. 65, 3130 (1989). See also C. Laubschat, M. Domke, M. Prietsch, T. Mandel, M. Bodenbach, G. Kaindl, H. J. Eickenbucsh, R. Schoellhorn, R. Miranda, E. Moran, F. Garcia, and M. Alario, Europhys. Lett. 6, 555 (1988) and P. A. P. Lindberg, Z-X. Shen, I. Lindau, W. E. Spicer, C. B. Eom, and T. H. Geballe, Appl. Phys. Lett. 52, 529 (1988).CrossRefGoogle Scholar
6Hill, D. M., Meyer, H. M., III, Weaver, J. H., Spencer, N. D., and Goretta, K. C., Surf. Sci. (submitted).Google Scholar
7Gao, Y., Wagener, T. J., Weaver, J. H., and Capone, D. W., II, Phys. Rev. B 37, 515 (1989).CrossRefGoogle Scholar
8Hill, D. M., Meyer, H. M., III, Weaver, J. H., and Nelson, D. L., Appl. Phys. Lett. 53, 1657 (1988).CrossRefGoogle Scholar
9Lindberg, P. A. P., Shen, Z-X., Spicer, W. E., and Lindau, I., Surf. Sci. Reports 11, 1 (1990).CrossRefGoogle Scholar
10Meyer, H. M., III, and Weaver, J. H., in Physical Properties of High Temperature Superconductors II, edited by D. M. Ginsberg (World Scientific, Inc. 1990), Chap. 6, pp. 369457.CrossRefGoogle Scholar
11Routbort, J. L., Rothman, S. J., Nowicki, L. J., and Goretta, K. C., Mater. Sci. Forum 34–36, 315 (1988).Google Scholar
12Chambers, S. A., Hill, D. M., Xu, F., and Weaver, J. H., Phys. Rev. B 35, 634 (1987).CrossRefGoogle Scholar
13Rao, G. R., Hedge, M. S., Sarma, D. D., and Rao, C. N. R., J. Phys.: Condens. Matter 1, 2147 (1989).Google Scholar
14 S. Hüfner and Wertheim, G. K., Phys. Rev. B 8, 4857 (1973).Google Scholar
15Wertheim, G. K. and Citrin, P. H., in Photoemission in Solids I, edited by Cardona, M. and Ley, L. (Springer-Verlag, Heidelberg, 1978).Google Scholar
16 This complicates the Ni-modified O 1s spectra, but it is of sufficiently small quantity that it does not affect the conclusion drawn in this paper.Google Scholar
17Weaver, J. H., Meyer, H. M., III, Wagener, T. J., Hill, D. M., Gao, Y., Petersen, D., Fisk, Z., and Arko, A. J., Phys. Rev. B 38, 4668 (1988).CrossRefGoogle Scholar
18Kishi, K. and Sasanuma, M., J. Electron Spectros. and Relat. Phenom. 48, 421 (1989).CrossRefGoogle Scholar
19Thuler, M. R., Benbow, R. L., and Hurych, Z., Phys. Rev. B 26, 669 (1982).CrossRefGoogle Scholar
20Fowler, D. E., Brundle, C. R., Lerczak, J., and Holtzberg, F., Surf. Sci. (in press).Google Scholar
21Shen, Z-X., Lindberg, P. A. P., Dessau, D. S., Lindau, I., Spicer, W. E., Mitzi, D. B., Borovic, I., and Kapitulnik, A., Phys. Rev. B 39, 4295 (1989); P. A. P. Lindberg, Z-X. Shen, B. O. Wells, D. S. Dessau, D. B. Mitzi, I. Lindau, W. E. Spicer, and A. Kapitulnik, Phys. Rev. B 39, 2890 (1989).CrossRefGoogle Scholar