Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T20:53:40.098Z Has data issue: false hasContentIssue false

Nitrogen diffusion in the Si growth on GaN by low-pressure chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

P. Chen*
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R. China
Y. D. Zheng
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R. China
S. M. Zhu
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R. China
D. J. Xi
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R. China
Z. M. Zhao
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R. China
S. L. Gu
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R. China
P. Han
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R. China
R. Zhang
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R. China
*
a)Address all correspondence to this author.[email protected]
Get access

Abstract

Si film has been grown on a wurtzite gallium nitride layer on sapphire by low-pressure chemical vapor deposition. Uniform nitrogen incorporation was found in the Si film at the concentration of 5%, indicating an incorporation-limited process through interstitial diffusion from GaN layer to Si layer. The nitrogen occupied the substitutional sites in the Si film, leading this Si layer to be n-type doping with the carrier concentration of 1.42 × 1018/cm3 and the hall mobility of 158 cm2/(V s). This is consistent with other calculated and experimental results, which suggest that only 5% nitrogen can occupy the substitutional sites in the nitrogen-doped Si materials.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lei, T., Moustakas, T.D., Graham, R.J., He, Y., and Berkowitz, S.J., J. Appl. Phys. 71, 4933 (1992).CrossRefGoogle Scholar
2.Steckl, A.J., Devrajan, J., Tran, C., Stall, R.A., Appl. Phys. Lett. 69, 2264 (1996).CrossRefGoogle Scholar
3.Takeuchi, T., Amano, H., Hiramatsu, K., Sawaki, N., and Akasaki, I., J. Cryst. Growth 115, 634 (1991).CrossRefGoogle Scholar
4.Watanabe, A., Takeuchi, T., Hirosawa, K., Amano, H., Hiramatsu, K., and Arasaki, I., J. Cryst. Growth 128, 391 (1993).CrossRefGoogle Scholar
5.Nakada, Y., Akesnov, I., and Okumura, H., Appl. Phys. Lett. 73, 827 (1998).Google Scholar
6.Kobayashi, N.P., Kobayashi, J.T., Dapkus, P.D., Choi, W.J., Bond, A.E., Zhang, X., and Rich, D.H., Appl. Phys. Lett. 71, 3569 (1997).CrossRefGoogle Scholar
7.Wang, L.S., Liu, X.L., Zan, Y.D., Wang, J., Lu, D.C., and Wang, Z.G., Appl. Phys. Lett. 72, 109 (1998).CrossRefGoogle Scholar
8.Lin, C.F., Cheng, H.C., Chi, G.C., Bu, C.J., and Feng, M.S., Appl. Phys. Lett. 76, 1878 (2000).Google Scholar
9.Pavlov, P.V., Zorin, E.I., Tetelbaum, D.I., and Popov, Yu. S., Dokl. Akad. Nauk. SSBR 163, 1128 (1965).Google Scholar
10.Pavlov, P.V., Zorin, E.I., Tetelbaum, D.I., and Khokhlov, A.F., Phys. Status Solidi A 35, 11 (1976).Google Scholar
11.Schultz, P.A. and Nelson, J.S., Appl. Phys. Lett. 78, 736 (2001).Google Scholar
12.Chambouleyron, I. and Zanatta, A.R., J. Appl. Phys. 84, 1 (1998).CrossRefGoogle Scholar