Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-20T04:11:59.022Z Has data issue: false hasContentIssue false

Nitriding of yttria-stabilized zirconia in atmospheric pressure microwave plasma

Published online by Cambridge University Press:  31 January 2011

R. Milani
Affiliation:
Universidade de Caxias do Sul, 95070-560 Caxias do Sul, RS, Brazil
T. Belmonte
Affiliation:
Institut Jean Lamour, Nancy-Université, CNRS, 54042 Nancy Cedex, France
G.V. Soares*
Affiliation:
Universidade de Caxias do Sul, 95070-560 Caxias do Sul, RS, Brazil
I.J.R. Baumvol
Affiliation:
Universidade de Caxias do Sul, 95070-560 Caxias do Sul, RS, Brazil; and Universidade Federal do Rio Grande do Sul, Instituto de Física, 91501-970 Porto Alegre, RS, Brazil
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

High temperature plasma nitriding of yttria-partially-stabilized zirconia in atmospheric pressure microwave plasma was investigated. The morphological, mechanical, and physicochemical characteristics of the resulting nitrided layer were characterized by different methods, such as optical and scanning electron microscopy, microindentation, x-ray diffraction, narrow resonant nuclear reaction profiling, secondary neutral mass spectrometry, and x-ray photoelectron spectroscopy, aiming at investigating the applicability of this highly efficient process for nitriding of ceramics. The structure of the plasma nitrided layer was found to be complex, composed of tetragonal and cubic zirconia, as well as zirconium nitride and oxynitride. The growth rate of the nitrided layer, 4 µm/min, is much higher than that obtained by any other previous nitriding process, whereas a typical 50% increase in Vickers hardness over that of yttria-partially-stabilized zirconia was observed.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Chung, T.J., Lee, J.S., and Kim, D.Y.: Surface nitridation of yttria-doped tetragonal zirconia polycrystals (Y-TZP): Microstructural evolution and kinetics. J. Am. Ceram. Soc. 82, 3193 (1999).CrossRefGoogle Scholar
2Sharma, R., Naedele, D., and Schweda, E.: In situ studies of nitridation of zirconia (ZrO2). Chem. Mater. 13, 4014 (2001).CrossRefGoogle Scholar
3Lerch, M.: Nitridation of zirconia. J. Am. Ceram. Soc. 79, 2641 (1996).CrossRefGoogle Scholar
4Wrba, J. and Lerch, M.: Phase relationships in the ZrO2-rich part of the systems Y-Zr-N-O, Ca-Zr-N-O, and Mg-Zr-N-O up to temperatures of 1150 C. J. Eur. Ceram. Soc. 18, 1787 (1998).CrossRefGoogle Scholar
5Chung, T.J., Lee, J.S., Kim, D.Y., Kim, G.H., and Song, H.: Morphology and phase stability of nitrogen-partially stabilized zirconia (N-PSZ). J. Am. Ceram. Soc. 84, 172 (2001).CrossRefGoogle Scholar
6Kathuria, Y.P.: Laser surface nitriding of yttria stabilized tetragonal zirconia. Surf. Coat. Technol. 201, 5865 (2007).CrossRefGoogle Scholar
7Fu, B. and Gao, L.: Synthesis of nanocrystalline zirconium nitride powders by reduction-nitridation of zirconium oxide. J. Am. Ceram. Soc. 87, 696 (2004).Google Scholar
8Kathuria, Y.P.: Physical aspects of laser nitriding of yttria stabilized t-zirconia. Appl. Surf. Sci. 254, 937 (2007).Google Scholar
9Delachaux, T., Hollenstein, C., Levy, F., and Verdon, C.: Nitriding of tetragonal zirconia in a high current D.C. plasma source. Thin Solid Films 425, 113 (2003).CrossRefGoogle Scholar
10Chevalier, J. and Gremillard, L.: Ceramics for medical applications: A picture for the next 20 years. J. Eur. Ceram. Soc. 29, 1245 (2009).Google Scholar
11Niyomsoan, S., Grant, W., Olson, D.L., and Mishra, B.: Variation of color in titanium and zirconium nitride decorative thin films. Thin Solid Films 415, 187 (2002).Google Scholar
12Reddy, G.L.N., Ramana, J.V., Kumar, S., Kumar, S.V., and Raju, V.S.: Investigations on the oxidation of zirconium nitride films in air by nuclear-reaction analysis and backscattering spec-trometry. Appl. Surf. Sci. 253, 7230 (2007).CrossRefGoogle Scholar
13Auger, M.A., Araiza, J.J., Falcony, C., Sänchez, O., and Albella, J.M.: Hardness and tribology measurements on ZrN coatings deposited by reactive sputtering technique. Vacuum 81, 1462 (2007).Google Scholar
14Jianxin, D., Jianhua, L., Jinlong, Z., Wenlong, S., and Ming, N.: Friction and wear behaviors of the PVD ZrN coated carbide in sliding wear tests and in machining processes. Wear 264, 298 (2008).Google Scholar
15Ariza, E., Rocha, L.A., Vaz, F., Cunha, L., Ferreira, S.C., Carvalho, P., Rebouta, L., Alves, E., Goudeau, Ph., and Riviäre, J.P.: Corrosion resistance of ZrNxOy thin films obtained by rf reactive magnetron sputtering. Thin Solid Films 469–470, 274 (2004).Google Scholar
16Ramos, H.J. and Valmoria, N.B.: Thin-film deposition of ZrN using a plasma sputter-type negative ion source. Vacuum 73, 549 (2004).CrossRefGoogle Scholar
17Huang, J.H., Chang, K.H., and Yu, G.P.: Synthesis and characterization of nanocrystalline ZrNxOy thin films on Si by ion plating. Surf. Coat. Technol. 201, 6404 (2007).Google Scholar
18Chieh, Y.C., Lo, W.Z., and Lu, F.H.: Microstructure evolution of ZrN films annealed in vacuum. Surf. Coat. Technol. 200, 3336 (2006).Google Scholar
19Caruso, R., Gämez, B.J., Sanctis, O. de, Feugeas, J., DíazParralejo, A., and Sánchez-Bajo, F.: Ion nitriding of zirconia coated on stainless steel: Structure and mechanical properties. Thin Solid Films 468, 142 (2004).CrossRefGoogle Scholar
20Cheng, Y.B. and Thompson, D.P.: Role of anion vacancies in nitrogen-stabilized zirconia. J. Am. Ceram. Soc. 76, 683 (1993).Google Scholar
21Mohamed, S.H., El-Rahman, A.M.A., and Armed, M.R.: Investigation of zirconium oxynitride thin films deposited by reactive pulsed magnetron sputtering. J. Phys. D: Appl. Phys. 40, 7057 (2007).Google Scholar
22Vaz, F., Carvalho, P., Cunha, L., Rebouta, L., Moura, C., Alves, E., Ramos, A.R., Cavaleiro, A., Goudeau, P., and Riviáre, J.P.: Property change in ZrNxOy thin films: Effect of the oxygen fraction and bias voltage. Thin Solid Films 469–470, 11 (2004).Google Scholar
23Yamamura, H., Yamamoto, M., and Kakinuma, K.: Synthesis of ZrN thin film by a new carbothermal nitridation method of solgel derived ZrO2. J. Ceram. Soc. Jpn. 113, 458 (2005).Google Scholar
24Mitsuo, A., Mori, T., Setsuhara, Y., Miyake, S., and Aizawa, T.: Mechanical properties of zirconium films prepared by ion-beam-assisted deposition. Nucl. Instrum. Methods Phys. Res., Sect. B 206, 366 (2003).Google Scholar
25Rizzo, A., Signore, M.A., Mirenghi, L., and Serra, E.: Properties of ZrNx films with x > 1 deposited by reactive radiofrequency magnetron sputtering. Thin Solid Films 515, 1307 (2006).Google Scholar
26Cardoso, R.P., Belmonte, T., Henrion, G., and Sadeghi, N.: Influence of trace oxygen on He(23S) density in a He-O2 microwave discharge at atmospheric pressure: Behaviour of the time afterglow. J. Phys. D: Appl. Phys. 39, 4178 (2006).CrossRefGoogle Scholar
27Cardoso, R.P., Belmonte, T., Keravec, P., Kosior, F., and Henrion, G.: Influence of impurities on the temperature of an atmospheric helium plasma in microwave resonant cavity. J. Phys. D: Appl. Phys. 40, 1394 (2007).CrossRefGoogle Scholar
28Amsel, G., Nadai, J.P., D'Artemare, E., David, D., Girard, E., and Moulin, J.: Microanalysis by the direct observation of nuclear reactions using a 2 MeV Van de Graaff. Nucl. Instrum. Methods 92, 481 (1971).Google Scholar
29Baumvol, I.J.R.: Atomic transport during growth of ultrathin dielectrics on silicon. Surf. Sci. Rep. 36, 1 (1999).Google Scholar
30Vickridge, I. and Amsel, G.: SPACES: A PC implementation of the stochastic theory of energy loss for narrow-resonance depth profiling. Nucl. Instrum. Methods Phys. Res., Sect. B 45, 6 (1990).CrossRefGoogle Scholar
31Kim, K.H. and Shim, K.B.: The effects of lanthanum on the fabrication of ZrB2-ZrC composites by spark plasma sintering. Mater. Charact. 50, 31 (2003).Google Scholar
32Valov, I., Souza, R.A. de, Wang, C.Z., Börger, A., Korte, C., Martin, M., Becker, K.D., and Janek, J.: Preparation of nitrogen-doped YSZ thin films by pulsed laser deposition and their characterization. J. Mater. Sci. 42, 1931 (2007).CrossRefGoogle Scholar
33Mazzoni, A.D. and Aglietti, E.F.: The formation of ZrX (O-N-C) phase by the carbonitriding of zircon at high temperatures. Mater. Chem. Phys. 65, 166 (2000).CrossRefGoogle Scholar
34Rizzo, A., Signore, M.A., Mirenghi, L., and Dimaio, D.: Deposition and properties of ZrNx films produced by reactive radio frequency magnetron sputtering. Thin Solid Films 515, 1486 (2006).Google Scholar
35Wiame, H., Centeno, M.A., Picard, S., Bastians, P., and Grange, P.: Thermal oxidation under oxygen of zirconium nitride studied by XPS, DRIFTS, TG-MS. J. Eur. Ceram. Soc. 18, 1293 (1998).CrossRefGoogle Scholar
36Bockris, J.O. and Kang, Y.: The protectivity of aluminum and its alloys with transition metals. J. Solid State Electrochem. 1, 17 (1997).Google Scholar
37Kilo, M., Taylor, M.A., Borchardt, G., Kaiser-Bischoff, I., Boysen, H., Rödel, C., and Lerch, M.: Fast anion-conduction in oxynitrides: Oxygen and nitrogen transport in (Y,Zr)-(O,N). Diffus. Fundam. 8, 1 (2008).Google Scholar
38Ivanovski, A.L., Zainuilina, V.M., and Okatov, S.V.: Chemical binding and electronic structure of fluorite-like zirconium. J. Struct. Chem. 41, 553 (2000).Google Scholar