Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T23:46:12.932Z Has data issue: false hasContentIssue false

Ni3N compound layers produced by gaseous nitriding of nickel substrates; layer growth, macrostresses and intrinsic elastic anisotropy

Published online by Cambridge University Press:  12 March 2012

Andreas Leineweber*
Affiliation:
Max Planck Institute for Intelligent Systems, D-70569 Stuttgart, Germany
Franziska Lienert
Affiliation:
Institute for Materials Science, University of Stuttgart, D-70569 Stuttgart, Germany
Shun Li Shang
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802
Zi-Kui Liu
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802
Eric Jan Mittemeijer
Affiliation:
Max Planck Institute for Intelligent Systems, D-70569 Stuttgart, Germany; and Institute for Materials Science, University of Stuttgart, D-70569 Stuttgart, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Ni3N was prepared by gaseous nitriding of nickel substrates using gas mixtures of high nitrogen activities, composed of NH3 and H2 at 1 atm and at temperatures between 175 °C and 550 °C. At least above 300 °C closed Ni3N layers developed, which possess distinct compressive macrostrain parallel to the surface. The observed hkl-anisotropy of the macrostrain could be ascribed to the elastic anisotropy as indicated by the single-crystal elastic constants of Ni3N obtained from first-principles calculations performed in this work. The macrostress originates from the thermal misfit between layer and substrate, developing upon cooling. The extent of macrostress is reduced by partial misfit accommodation by plastic deformation as well as by porosity.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Davis, J.R., Davidson, G.M., Lampman, S.R., Zorc, T.B., Daquila, J.L., Ronke, A.W., and Henniger, K.L.: ASM Handbook, Volume 4, Heat Treating (ASM International, Metals Park, Ohio, 1991).Google Scholar
2.Andriamandroso, D., Demazeau, G., Pouchard, M., and Hagenmuller, P.: New ferromagnetic materials for magnetic recording: The iron carbonitrides. J. Solid State Chem. 19, 1503 (1985).Google Scholar
3.Juza, R. and Sachsze, W.: On the system nickel/nitrogen (in German). Z. Anorg. Allg. Chem. 251, 201 (1943).CrossRefGoogle Scholar
4.Juza, R. and Sachsze, W.: On the system cobalt/nitrogen (in German). Z. Anorg. Chem. 253, 95 (1945).CrossRefGoogle Scholar
5.Leineweber, A., Jacobs, H., and Hull, S.: Ordering of nitrogen in nickel nitride Ni3N determined by neutron diffraction. Inorg. Chem. 40, 5818 (2001).CrossRefGoogle ScholarPubMed
6.Desmoulins-Kraviec, S., Aymonier, C., Loppinet-Serani, A., Weill, F., Grosse, S., Etourneau, J., and Cansell, F.: Synthesis of nanostructured materials in supercritical ammonia: Nitrides, metals and oxides. J. Mater. Chem. 14, 228 (2004).CrossRefGoogle Scholar
7.Hasegawa, M. and Yagi, T.: Systematic study of formation and crystal structure of 3d-transition metal nitrides synthesized in a supercritical nitrogen fluid under 10 GPa and 1800 K using diamond anvil cell and YAG laser heating. J. Alloys Compd. 403, 131 (2005).CrossRefGoogle Scholar
8.Choi, J. and Gillan, E.G.: Solvothermal metal azide decomposition routes to nanocrystalline metastable nickel, iron, and manganese nitrides. Inorg. Chem. 48, 4470 (2009).CrossRefGoogle ScholarPubMed
9.Wang, Z.Q., Yu, W.J., Chen, J., Zhang, M.H., Li, W., and Tao, K.Y.: Facile synthesis of a metastable nanocrystalline Ni3N from nickel nanoparticle. J. Alloys Compd. 466, 352 (2008).CrossRefGoogle Scholar
10.Guillaume, C., Morniroli, J.P., Frost, D.J., and Serghiou, G.: Synthesis of hexagonal Ni3N using high pressures and temperatures. J. Phys. Condens. Matter 18, 8651 (2006).CrossRefGoogle ScholarPubMed
11.Dorman, G.J.W.R. and Sikkens, M.: Structure of reactively sputtered nickel nitride films. Thin Solid Films 105, 251 (1983).CrossRefGoogle Scholar
12.Maya, L.: Deposition of crystalline binary nitride films of tin, copper, and nickel by reactive sputtering. J. Vac. Sci. Technol., A 11, 604 (1993).CrossRefGoogle Scholar
13.Vempaire, D., Fettar, F., Ortega, L., Pierre, F., Miraglia, S., Sulpice, A., Pelletier, J., Hlil, E.K., and Fruchart, D.: Nonmagnetic thin layers of Ni3N. J. Appl. Phys. 106, 073911 (2009).CrossRefGoogle Scholar
14.Vempaire, D., Miraglia, S., Pelletier, J., Fruchart, D., Hlil, E.K., Ortega, L., Sulpice, A., and Fettar, F.: Structural and magnetic properties of Ni3N synthesized by multidipolar microwave plasma-assisted reactive sputtering. J. Alloys Compd. 480, 225 (2009).CrossRefGoogle Scholar
15.Popovic, N., Bogdanov, Z., Goncic, B., Strbac, S., and Rakocevic, Z.: Reactively sputtered Ni, Ni(N) and Ni3N films: Structural, electrical and magnetic properties. Appl. Surf. Sci. 225, 4027 (2009).CrossRefGoogle Scholar
16.Wriedt, H.A.: The N-Ni (Nitrogen-Nickel) system. Bull. Alloy Phase Diagr. 6, 558 (1985).CrossRefGoogle Scholar
17.Fernandez Guillermet, A. and Frisk, K.: Thermodynamic properties of Ni nitrides and phase stability in the Ni-N system. Int. J. Thermophys. 12, 417 (1991).CrossRefGoogle Scholar
18.Terao, N. and Berghezan, A.: Transformation of metallic lattices under the influence of interstitial elements—tranformation of nickel under the influence of nitrogen (in French). J. Phys. Soc. Jpn. 14, 139 (1959).CrossRefGoogle Scholar
19.Terao, N.: A novel form of nickel nitride—Ni4N (in French). J. Phys. Soc. Jpn. 15, 227 (1960).CrossRefGoogle Scholar
20.Nagakura, N., Otsuka, N., and Hirotsu, Y.: Electron state of Ni4N studied by electron-diffraction. J. Phys. Soc. Jpn. 35, 1492 (1973).CrossRefGoogle Scholar
21.Lehrer, E.: On the equilibrium iron-hydrogen-ammonia (in German). Z. Elektrochem. 36, 383 (1930).Google Scholar
22.Mittemeijer, E.J. and Somers, M.A.J.: Thermodynamics, kinetics, and process control of nitriding. Surf. Eng. 13, 483 (1997).CrossRefGoogle Scholar
23.Kunze, J.: Nitrogen and Carbon in Iron and Steel (Akademie-Verlag, Berlin, 1990).Google Scholar
24.Fernández Guillermet, A. and Du, H.: Thermodynamic analysis of the Fe-N system using the compound-energy model with prediction of the vibrational entropy. Z. Metallkd. 85, 154 (1994).Google Scholar
25.Leineweber, A., Lienert, F., Glock, S., Woehrle, T., Schaaf, P., Wilke, M., and Mittemeijer, E.J.: X-ray diffraction investigations on gas nitrided nickel and cobalt. Z. Kristallogr. Proc. 1, 293 (2011).Google Scholar
26.AnalySIS. Image Analyisis Software, Soft imaging system GmbH: Germany.Google Scholar
27.TOPAS. General Profile and Structure Analysis Software for Powder Diffraction Data, Karlsruhe, Germany: Bruker AXS GmbH.Google Scholar
28.Kresse, G. and Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
29.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle ScholarPubMed
30.Kresse, G. and Furthmüller, J.: Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
31.Shang, S.L., Wang, Y., and Liu, Z.K.: First-principles elastic constants of α- and θ-Al2O3. Appl. Phys. Lett. 90, 101909 (2007).CrossRefGoogle Scholar
32.Methfessel, M. and Paxton, A.T.: High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616 (1989).CrossRefGoogle ScholarPubMed
33.Blöchl, P.E., Jepsen, O., and Andersen, O.K.: Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223 (1994).CrossRefGoogle ScholarPubMed
34.Nikolussi, M., Shang, S.L., Gressmann, T., Leineweber, A., Mittemeijer, E.J., Wang, Y., and Liu, Z.-K.: Extreme elastic anisotropy of cementite, Fe3C: First-principles calculations and experimental evidence by x-ray diffraction stress measurements. Scr. Mater. 59, 814 (2008).CrossRefGoogle Scholar
35.Shang, S.L., Sheng, G., Wang, Y., Chen, L.Q., and Liu, Z.K.: Elastic properties of cubic and rhombohedral BiFeO3 from first-principles calculations. Phys. Rev. B 80, 052102 (2009).CrossRefGoogle Scholar
36.Ganeshan, S., Shang, S.L., Wang, Y., and Liu, Z.K.: Effect of alloying elements on the elastic properties of Mg from first-principles calculations. Acta Mater. 57, 3876 (2009).CrossRefGoogle Scholar
37.Shang, S.L., Wang, Y., Kim, D.E., and Liu, Z.K.: First-principles thermodynamics from phonon and Debye model: Application to Ni and Ni3Al. Comput. Mater. Sci. 47, 1040 (2010).CrossRefGoogle Scholar
38.Gressmann, T., Leineweber, A., and Mittemeijer, E.J.: X-ray diffraction line-profile analysis of hexagonal ε-iron-nitride compound layers: Composition- and stress-depth profiles. Philos. Mag. 88, 145 (2008).CrossRefGoogle Scholar
39.Kaminsky, W.: Wintensor Version 1.1. (University of Washington, Seattle, 2004).Google Scholar
40.Ranganathan, S.I. and Ostoja-Starzewski, M.: Universal elastic anisotropy index. Phys. Rev. Lett. 101, 055504 (2008).CrossRefGoogle ScholarPubMed
41.Gressmann, T., Wohlschlögel, M., Shang, S., Welzel, U., Leineweber, A., Mittemeijer, E.J., and Liu, Z.-K.: Elastic anisotropy of γ′-Fe4N and elastic grain interaction in γ′-Fe4N1-y layers on α-Fe: First-principles calculations and diffraction stress measurements. Acta Mater. 55, 5833 (2007).CrossRefGoogle Scholar
42.Ledbetter, H. and Migliori, A.: A general elastic-anisotropy measure. J. Appl. Phys. 100, 063516 (2006).CrossRefGoogle Scholar
43.Born, M. and Huang, K.: Dynamic Theory of Crystal Lattices (Oxford University Press, Oxford, 1962).Google Scholar
44.Grabke, H.J., Strauss, S., and Vogel, D.: Nitridation in NH3-H2O-mixtures. Mater. Corros. 54, 895 (2003).CrossRefGoogle Scholar
45.Prenosil, B.: Some new insights on the microstructure of layers carobnitrided at 600 °C (in German). Härt. Techn. Mitt. 28, 157 (1973).Google Scholar
46.Juza, R.: Nitrides of metals of the first transition series. Adv. Inorg. Chem. 9, 81 (1966).Google Scholar
47.Gokcen, N.A.: The Mn-N (Manganese-Nitrogen) system. Bull. Alloy Phase Diagr. 11, 33 (1990).CrossRefGoogle Scholar
48.Leineweber, A., Jacobs, H., and Kockelmann, W.: Nitrogen ordering in ζ-manganese nitrides with hcp arrangement of Mn—MnNy with 0.39 < y < 0.48—determined by neutron diffraction. J. Alloys Compd. 368, 229 (2004).CrossRefGoogle Scholar
49.Somers, M.A.J. and Mittemeijer, E.J.: Layer-growth kinetics on gaseous nitriding of pure iron: Evaluation of diffusion coefficients for nitrogen in iron nitrides. Metall. Mater. Trans. A 26A, 57 (1995).CrossRefGoogle Scholar
50.Gressmann, T., Nikolussi, M., Leineweber, A., and Mittemeijer, E.J.: Formation of massive cementite layers on iron by ferritic carburizing in the additional presence of ammonia. Scr. Mater. 55, 723 (2006).CrossRefGoogle Scholar
51.Nikolussi, M., Leineweber, A., and Mittemeijer, E.J.: Growth of massive cementite layers; thermodynamic parameters and kinetics. J. Mater. Sci. 44, 770 (2009).CrossRefGoogle ScholarPubMed
52.Hillert, M., Höglund, L., and Ågren, J.: Diffusion in interstitial compounds with thermal and stoichiometric defects. J. Appl. Phys. 98, 053511 (2005).CrossRefGoogle Scholar
53.Welzel, U., Ligot, J., Lamparter, P., Vermeulen, A.C., and Mittemeijer, E.J.: Stress analysis of polycrystalline thin films and surface regions by x-ray diffraction. J. Appl. Crystallogr. 38, 1 (2005).CrossRefGoogle Scholar
54.Welzel, U. and Mittemeijer, E.J.: Diffraction stress analysis of macroscopically elastically anisotropic specimens: On the concepts of diffraction elastic constants and stress factors. J. Appl. Phys. 93, 9001 (2003).CrossRefGoogle Scholar
55.Leineweber, A., Gressmann, T., Nikolussi, M. and Mittemeijer, E.J.: The hkl dependence of microstrain line broadening and of macrostress-induced peak shifting; a comparison for intrinsically extremely anisotropic cementite, Fe3C. Z. Kristallogr. Suppl. 30, 103 (2009).CrossRefGoogle Scholar
56.Howard, C.J. and Kisi, E.H.: Measurement of single-crystal elastic constants by neutron diffraction from polycrystals. J. Appl. Crystallogr. 32, 624 (1999).CrossRefGoogle Scholar
57.Leineweber, A., Jacobs, H., Kockelmann, W., Hull, S., and Hinz-Hübner, D.: High temperature axial ratios c/a in hcp-based ε-type interstitial nitrides MNy with M = Mn, Fe, Ni. J. Alloys Compd. 384, 1 (2004).CrossRefGoogle Scholar
58.Kollie, T.: Measurement of the thermal-expansion coefficient of nickel from 300 to 1000 K and determination of the power-law constants near the curie temperature. Phys. Rev. B 16, 4872 (1977).CrossRefGoogle Scholar
59.Chopra, K.L.: Thin Film Phenomena (McGraw-Hill, New York, 1969).Google Scholar