Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T21:13:55.178Z Has data issue: false hasContentIssue false

Ni, Pd, and Pt on GaAs: A comparative study of interfacial structures, compositions, and reacted film morphologies

Published online by Cambridge University Press:  31 January 2011

T. Sands
Affiliation:
Bell Communications Research. Inc., Red Bank, New Jersey 07701-7020
V. G. Keramidas
Affiliation:
Bell Communications Research. Inc., Red Bank, New Jersey 07701-7020
A. J. Yu
Affiliation:
Department of Materials Science and Engineering. Cornell University. Ithaca, New York 14583
K-M. Yu
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, California 94720
R. Gronsky
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, California 94720
J. Washburn
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, California 94720
Get access

Abstract

The reactions between (100) GaAs and the near-noble metals Ni, Pd, and Pt have been investigated by application of high-resolution transmission electron microscopy (TEM), energy-dispersive analysis of x-rays in the scanning TEM and Rutherford backscattering spectrometry. Emphasis is placed on the evolution of the phase distributions, film compositions, and interface morphologies during annealing at temperatures up to 480°C. The first phase in the Ni/GaAs reaction is shown to have the nominal composition Ni3GaAs. Ternary phases of the type PdxGaAs are also found to be the dominant products of the Pd/GaAs reaction. Conversely, only binary phases result from the Pt/GaAs reaction. These observations are used to construct isothermal sections of the M-Ga-As thin-film phase diagrams. The behavior of a thin (1–2 nm) native oxide-hydrocarbon layer during the Ni/GaAs, Pd/GaAs, and Pt/GaAs reactions is also investigated. Only the Ni/GaAs reaction is noticeably impeded in some regions by this intervening layer. In contrast, the Pd/GaAs and Pt/GaAs reactions tend to mechanically disperse the native oxide layers.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Tersoff, J.J. Vac. Sci. Technol. B 3, 1157 (1985).CrossRefGoogle Scholar
2Sankey, O. F.Allen, R. E.Ren, S. F., and Dow, J. D. in Ref. 1, p. 1162.Google Scholar
3Duke, C. B. and Mailhiot, C. in Ref. 1, p. 1170.Google Scholar
4Spicer, W. E.Newman, N.Kendelewicz, T.Petro, W. G.Williams, M. D.McCants, C. E. and Lindau, I. in Ref. 1, p 1178.Google Scholar
5Schaffler, F. and Abstreiter, G. in Ref. 1, p. 1184.Google Scholar
6Woodall, M. and Freeouf, J. L.J. Vac. Sci. Technol. 2, 510 (1984).CrossRefGoogle Scholar
7Ludeke, R.Chiang, T. C., and Miller, T.J. Vac. Sci. Technol. 1, 581 (1983).CrossRefGoogle Scholar
8Anderson, W. T. Jr. , Christou, A. and Davey, J. E.J. Appl. Phys. 49, 2998 (1978).Google Scholar
9Marshall, E. D.Chen, W. X.Wu, C. S.Lau, S. S. and Keuch, T. F.Appl. Phys. Lett. 47, 298 (1985).CrossRefGoogle Scholar
10Smith, S. R. and Solomon, J. S.Mater. Lett. 3, 294 (1985).CrossRefGoogle Scholar
11Tsutsui, K. and Furukawa, S.J. Appl. Phys. 56, 560 (1984).CrossRefGoogle Scholar
12Sands, T.Keramidas, V. G.Gronsky, R. and Washburn, J.Thin Solid Films 136, 105 (1986).CrossRefGoogle Scholar
13Robinson, G. Y.Solid-State Electron. 18, 331 (1975).CrossRefGoogle Scholar
14Kuan, T. S.Batson, P. E.Jackson, T. N.Rupprecht, H. and Wilkie, E. L., J. Appl. Phys. 54, 6952 (1983).Google Scholar
15Ogawa, M.Thin Solid Films 70, 181 (1980).CrossRefGoogle Scholar
16Lahav, A.Eizenberg, M. and Komem, Y.Mater. Res. Soc. Symp. Proc. 37, 641 (1985).Google Scholar
17Sands, T.Keramidas, V. G.Washburn, J. and Gronsky, R.Appl. Phys. Lett. 48, 402 (1986).CrossRefGoogle Scholar
18Sinha, A. K.Smith, T. E. and Levinstein, M. J.IEEE Trans. Electron Devices ED 22, 218 (1975).CrossRefGoogle Scholar
19Olowolafe, J. O.Ho, P. S.Hovel, M. J.Lewis, J. E. and Woodall, J. M., J. Appl. Phys. 50, 955 (1979).Google Scholar
20Zeng, X. F. and Chung, D. D. L.J. Vac. Sci. Technol. 21, 611 (1982).CrossRefGoogle Scholar
21Kuan, T. S.Freeouf, J. L.Batson, P. E. and Wilkie, E. L.J. Appl. Phys. 58, 1519 (1985).CrossRefGoogle Scholar
22Sands, T.Keramidas, V. G.Gronsky, R. and Washburn, J.Mater. Lett. 3, 409 (1985).Google Scholar
23Kuan, T. S.Mater. Res. Soc. Symp. Proc. 31, 143 (1984).Google Scholar
24Sands, T.Keramidas, V. G.Yu, A. J.Yu, K. M.Gronsky, R. and Washburn, J.Mater. Res. Soc. Symp. Proc. 54, 367 (1986).Google Scholar
25Oelhafen, P.Freeouf, J. L.Kuan, T. S.Jackson, T. N. and Batson, P. E.J. Vac. Sci. Technol. B 1, 588 (1983).Google Scholar
26El-Boragy, M. and Schubert, K.Z. Metallkunde 72, 279 (1981).Google Scholar
27Toyoda, N.Mochizuki, M.Mizoguehi, T.Nii, R. and Hojo, A.GaAs and Related Compounds, 1981, edited by Sugano, T. (Institute of Physics, Bristol, 1982), p. 521.Google Scholar
28Sinha, A. K. and Poate, J. M. in Thin Films-Interdiffusion and Reactions, edited by Tu, K. N. and Mayer, J. W. (Wiley, New York, 1978), p. 417.Google Scholar
29Sinha, A. K. and Poate, J. M.Appl. Phys. Lett. 23, 666 (1973).CrossRefGoogle Scholar
30Fontaine, C.Okumura, T. and Tu, K. N.J. Appl. Phys. 54, 1404 (1983).Google Scholar
31Sands, T.Mater. Res. Soc. Symp. Proc. 62, 25 (1986).Google Scholar
32Cliff, G. and Lorimer, G. W.J. Micros. 103, 203 (1975).CrossRefGoogle Scholar
33Doolittle, L. R.Nucl. lustrum. Methods B 9, 344 (1985).Google Scholar
34Chen, L. J. and Hsieh, Y. F.Proceedings of the 41st Annual Meeting of the Electron Microscopy Society of America edited by Bailey, G. W. (San Francisco, San Francisco, CA, 1983), p. 156.Google Scholar
35Pearson, W. B.Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon, New York, 1958), p. 695; F. Laves and H. J. Wallbaum Z. Angew Min. 4, 17 (1941-42).Google Scholar
36Hansen, M.Constitution of Binary Alloys (McGraw-Hill, New York, 1958), p. 750; E. Hellner and F. Laves Z. Naturforsch. A 2, 177 (1947).Google Scholar
37Chen, S. H.Carter, C. B.Palmstrom, C. J. and Ohashi, T.Mater. Res. Soc. Symp. Proc. 54, 361 (1986).Google Scholar
38Heydingand, R. D.Calvert, L. D.Can. J. Chem. 35, 1205 (1957).Google Scholar
39Beyers, R.Sinclair, R. and Thomas, M. E.J. Vac. Sci. Technol. B 2, 781 (1984).CrossRefGoogle Scholar
40Sands, T.Yu, K. M.Cheung, S. K. and Keramidas, V. G. in the Proceedings of the 1986 Northeast Regional Meeting on Semiconductor-based Heterostructures: Inlerfacial Structure and Stability, edited by Green, M. L.Baglin, J. E. E.Chin, G. Y.Deckman, H. W.Mayo, W. and Narasinham, D. (The Metallurgical Society, Warren-dale, PA, 1986), p. 397.Google Scholar
41Yu, K. M.Jaklevic, J. and Haller, E. E.Mater. Res. Soc. Symp. Proc. 69, 281 (1986).CrossRefGoogle Scholar
42Kumar, V.J. Phys. Chem. Solids 36, 535 (1975).CrossRefGoogle Scholar
43Chang, C. C.Murarka, S. P.Kumar, V. and Quintana, G.J. Appl. Phys. 46, 4237 (1975).CrossRefGoogle Scholar
44Yu, A. J.Galvin, G. J.Palmstrom, C. J. and Mayer, J. W.Appl. Phys. Lett. 47, 934 (1985).Google Scholar
45Yu, A. J. and Palmstrom, C. J. (private communication).Google Scholar