Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T19:27:15.059Z Has data issue: false hasContentIssue false

New tricks in the rapid quench route to high Tc materials

Published online by Cambridge University Press:  31 January 2011

A.E. Miller
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974-2070
K. Nassau
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974-2070
D.J. Werder
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974-2070
Get access

Abstract

High Tc materials containing Bi form glasses when quenched from their melts. These materials pass through a number of intermediate phases when furnace heated, causing chemical segregation along the way; extended annealing is then required to achieve a chemically uniform product. Chemical uniformity is preserved from the glass directly to a high Tc phase by placing the glass suddenly into a furnace at a temperature in which the final product is stable. In addition, it was found possible to hot press the glass flakes into a compact at a sufficiently low temperature without chemical segregation so that a sudden heating step will achieve the same result in bulk material.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jin, S. and Graebner, J.E.Mater. Sci. Eng. B7, 243 (1991).Google Scholar
2Maeda, H.Tanaka, Y.Fukutomi, M. and Asano, T.Jpn. J. Appl. Phys. 27, L209 (1988).Google Scholar
3Tallon, J. L.Buckley, R. G.Gilberd, P. W.Presland, M. R.Brown, I. W. M.Bowden, M. E.Christian, L. A. and Goguel, R.Nature 333, 153 (1988).Google Scholar
4Nassau, K.Miller, A.E. and Gyorgy, E. M.Mater. Res. Bull. XXIV, 711 (1989).Google Scholar
5Nassau, K.Miller, A.E.Gyorgy, E.M. and Siegrist, T.J. Mater. Res. 4, 1330 (1989).Google Scholar
6Tatsumisago, M.Angell, C. A.Tsuboi, S.Akamatsu, Y.Tohge, N. and Minami, T.Appl. Phys. Lett. 54, 2268 (1989).Google Scholar
7Murayama, N.Hiramatsu, Y. and Torii, Y.Jpn. J. Appl. Phys. 29, L875 (1990).CrossRefGoogle Scholar
8Ikeda, H.Yoshizaki, R.Yoshikawa, K. and Tomita, N.Jpn. J. Appl. Phys. 29, L430 (1990).Google Scholar
9Sunshine, S.A.Siegrist, T.Schneemeyer, L.F.Murphy, D.W.Cava, R.J.Batlogg, B.Dover, R.B. van, Fleming, R.M.Glarum, S.H.Nakahara, S.Farrow, R.Krajewski, J. J.Zahurak, S. M.Waszczak, J. V.Marshall, J. H.Marsh, P.Rupp, L. W. Jr. , and Peck, W. F.Phys. Rev. B38, 893 (1988).Google Scholar