Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T10:05:59.389Z Has data issue: false hasContentIssue false

New synthetic methodology and magnetic properties of fcc Co–Ni nanostructured alloys embedded in KIT-6 matrix

Published online by Cambridge University Press:  13 July 2016

Shankar B. Dalavi
Affiliation:
Department of Chemistry, Birla Institute of Technology and Science, Pilani, K. K. Birla Goa Campus, Zuarinagar-403726, Goa, India
Rabi N. Panda*
Affiliation:
Department of Chemistry, Birla Institute of Technology and Science, Pilani, K. K. Birla Goa Campus, Zuarinagar-403726, Goa, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Magnetic characteristics of nanocrystalline CoNi alloy materials embedded in silica matrix (KIT-6) have been investigated. CoNi alloys with different loading (4–12 wt%) were synthesized via a novel chemical reduction route. The materials are characterized by UV–VIS, IR, powder x-ray diffraction (XRD), transmission electron microscopy (TEM) and studied for their adsorption–desorption and magnetic properties. CoNi alloys crystallize in pure fcc phase with lattice parameters (a) and crystallite sizes in the range of 3.53(±2)–3.54(±2) Å and 13.6(±1)–16.3(±1) nm, respectively. TEM microscopy studies reveal nanocrystalline nature of the materials. Enhancement of magnetic moment with the increase in loading wt% for CoNi alloys embedded in silica matrix is observed. The values of coercivity tend to decrease after dispersion in silica matrix and thereafter increase with increasing loading wt% of various CoNi loaded samples. The observed magnetic properties have been explained on the basis of size, surface effects, and dipolar interactions.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mishra, P.P., Manivel Raja, M., and Panda, R.N.: Enhancement of magnetic moment in Co substituted nanocrystalline ε-Co x Fe3−x N (0.2 ≤ x ≤ 0.4) synthesized by modified citrate precursor route. Mater. Res. Bull. 75, 127 (2016).Google Scholar
Prestgard, M.C., Siegel, G.P., and Tiwari, A.: Oxides for spintronics: A review of engineered materials for spin injection. Adv. Mater. Lett. 5, 242 (2014).Google Scholar
Slusser, P., Kumar, D., and Tiwari, A.: Unexpected magnetic behavior of Cu-doped CeO2 . Appl. Phys. Lett. 96, 142506 (2010).CrossRefGoogle Scholar
Corrias, A., Casula, M.F., Falqui, A., and Paschina, G.: Evolution of the structure and magnetic properties of FeCo nanoparticles in an alumina aerogel matrix. Chem. Mater. 16, 3130 (2004).CrossRefGoogle Scholar
Li, L., Lu, P., Yao, Y., and Ji, W.: Silica-encapsulated bimetallic Co–Ni nanoparticles as novel catalysts for partial oxidation of methane to syngas. Catal. Commun. 26, 72 (2012).Google Scholar
Hutten, A., Sudfeld, D., Ennen, I., Reiss, G., Wojczykowski, K., and Jutzi, P.: Ferromagnetic FeCo nanoparticles for biotechnology. J. Magn. Magn. Mater. 293, 93 (2005).Google Scholar
Lutz, T., Estournes, C., and Guille, J.L.: Metal (Fe, Co, Ni) nanoparticles in silica gels: Preparation and magnetic properties. J. Sol-Gel Sci. Technol. 13, 929 (1998).Google Scholar
Li, N., Hu, C., and Cao, M.: Enhanced microwave absorbing performance of CoNi alloy nanoparticles anchored on a spherical carbon monolith. Phys. Chem. Chem. Phys. 15, 7685 (2013).Google Scholar
de Julian Fernandez, C., Sangregorio, C., Mattei, G., Maurizio, C., Battaglin, G., Gonella, F., Lascialfari, A., Lo Russo, S., Gatteschi, D., Mazzoldi, P., Gonzalez, J.M., and Acapito, F.D.: Magnetic properties of Co and Ni based alloy nanoparticles dispersed in a silica matrix. Nucl. Instrum. Methods Phys. Res., Sect. B 175–177, 479 (2001).Google Scholar
Ennas, G., Falqui, A., Marras, S., Sangregorio, C., and Marongiu, G.: Influence of metal content on size, dispersion, and magnetic properties of iron–cobalt alloy nanoparticles embedded in silica matrix. Chem. Mater. 16, 5659 (2004).Google Scholar
Mattei, G., de Julian Fernandez, C., Mazzoldi, P., Sada, C., De, G., Battaglin, G., Sangregorio, C., and Gatteschi, D.: Synthesis, structure, and magnetic properties of Co, Ni, and Co–Ni alloy nanocluster-doped SiO2 films by sol–gel processing. Chem. Mater. 14, 3440 (2002).Google Scholar
Billas, I.M.L., Chatelain, A., and de Heer, W.A.: Magnetism of Fe, Co and Ni clusters in molecular beams. J. Magn. Magn. Mater. 168, 64 (1997).CrossRefGoogle Scholar
Dormann, J.L., Fiorani, D., and Tronc, E.: Magnetic relaxation in fine-particle systems. Adv. Chem. Phys. 98, 283 (1997).Google Scholar
Casu, A., Casula, M.F., Corrias, A., Falqui, A., Loche, D., Marrasa, S., and Sangregorio, C.: The influence of composition and porosity on the magnetic properties of FeCo–SiO2 nanocomposite aerogels. Phys. Chem. Chem. Phys. 10, 1043 (2008).Google Scholar
Ennas, G., Marongiu, G., Maras, S., and Piccaluga, G.: Mechanochemical route for the synthesis of cobalt ferrite–silica and iron–cobalt alloy–silica nanocomposites. J. Nanopart. Res. 6, 99 (2004).Google Scholar
Dalavi, S.B., Manivel Raja, M., and Panda, R.N.: FTIR, magnetic and Mӧssbauer investigations of nano-crystalline Fe x Co1−x (0.4 ≤ x ≤ 0.8) alloys synthesized via a superhydride reduction route. New J. Chem. 39, 9641 (2015).Google Scholar
Dalavi, S.B., Manivel Raja, M., and Panda, R.N.: Magnetic properties of Ni nanoparticles embedded in silica matrix (KIT-6) synthesized via novel chemical route. AIP Conf. Proc. 1665, 050071 (2015).Google Scholar
Barakat, N.A.M., Motlak, M., Lim, B.H., El-Newehy, M.H., and Al-Deyab, S.S.: Effective and stable CoNi alloy-loaded graphene for ethanol oxidation in alkaline medium. J. Electrochem. Soc. 161, F1194 (2014).CrossRefGoogle Scholar
Kleitz, F., Choi, S.H., and Ryoo, R.: Cubic Ia3d large mesoporous silica: Synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun. 17, 2136 (2003).CrossRefGoogle Scholar
Culity, B.D.: Elements of X-ray Diffraction (Addison Wesley, Reading, 1956); p. 98.Google Scholar
Mourhly, A., Khachani, M., Hamidi, A.E., Kacimi, M., Halim, M., and Arsalane, S.: The synthesis and characterization of low-cost mesoporous silica SiO2 from local pumice rock. Nanomater. Nanotechnol. 5, 35 (2015).Google Scholar
Dalavi, S.B. and Panda, R.N.: Magnetic properties of nanocrystalline Co and Ni synthesized via superhydride reduction route. J. Magn. Magn. Mater. 374, 411 (2015).Google Scholar
Panday, S., Daniel, B.S.S., and Jeevanandam, P.: Synthesis of nanocrystalline Co–Ni alloys by precursor approach and studies on their magnetic properties. J. Magn. Magn. Mater. 323, 2271 (2011).CrossRefGoogle Scholar
Ponrouch, A., Bichat, M.P., Garbarino, S., Maunders, C., Botton, G., Taberna, P.L., Simon, P., and Guay, D.: Synthesis and characterization of well aligned Ru nanowires and nanotubes. ECS Trans. 25, 3 (2010).Google Scholar
Suvorova, E.I. and Buffat, P.A.: Electron diffraction from micro- and nanoparticles of hydroxyapatite. J. Microsc. 196, 46 (1999).Google Scholar
Wu, N., Zhang, W., Li, B., and Han, C.: Nickel nanoparticles highly dispersed with an ordered distribution in MCM-41 matrix as an efficient catalyst for hydrodechlorination of chlorobenzene. Microporous Mesoporous Mater. 185, 130 (2014).Google Scholar
Culity, B.D. and Graham, C.D.: Introduction to Magnetic Materials, 2nd ed. (Wiley, Hoboken, 2009); p. 15.Google Scholar
Bean, C.P. and Jacobs, I.S.: Magnetization of a dilute suspension of a multidomain ferromagnetic. J. Appl. Phys. 31, 1228 (1960).CrossRefGoogle Scholar
Dalavi, S.B. and Panda, R.N.: Magnetic properties of nanostructured Co and Ni synthesized by modified NaBH4 reduction route. Part. Sci. Technol. 33, 97 (2015).Google Scholar
Liu, X.M., Fu, S.Y., and Huang, C.J.: Fabrication and characterization of spherical Co/Ni alloy particles. Mater. Lett. 59, 3791 (2005).CrossRefGoogle Scholar
Peng, K., Zhou, L., Hu, A., Tang, Y., and Li, D.: Synthesis and magnetic properties of Ni–SiO2 nanocomposites. Mater. Chem. Phys. 111, 34 (2008).Google Scholar
Prestgard, M.C., Siegel, G., Ma, Q., and Tiwari, A.: Magnetic characteristics of phase-separated CeO2:Co thin films. Appl. Phys. Lett. 103, 102409 (2013).Google Scholar
Luna, C., Morales, M.P., Serna, C.J., and Vazquez, M.: Multidomain to single-domain transition for uniform Co80Ni20 nanoparticles. Nanotechnology 14, 268 (2003).Google Scholar
Wu, H., Cao, P., Li, W., Ni, N., Zhu, L., and Zhang, X.: Microwave-assisted synthesis and magnetic properties of size-controlled CoNi/MWCNT nanocomposites. J. Alloys Compd. 509, 1261 (2011).Google Scholar
de Julian Fernandez, C., Sangregorio, C., Innocenti, C., Mattei, G., and Mazzoldi, P.: Nanostructure, composition and magnetic properties in soft and hard Co–Ni nanoparticles: The effect on the magnetic anisotropy. Inorg. Chim. Acta 361, 4138 (2008).CrossRefGoogle Scholar
Zhu, S., Sun, K., Zhang, Q.Y., Zu, X.T., Wang, L.M., and Ewing, R.C.: Structural and magnetic characterization of Co x Ni1−x nanoparticles in yttria-stabilized zirconia single crystals. J. Appl. Phys. 94, 5648 (2003).Google Scholar