Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T23:30:57.410Z Has data issue: false hasContentIssue false

A new route for the synthesis of calcium-deficient hydroxyapatites with low Ca/P ratio: Both spectroscopic and electric characterization

Published online by Cambridge University Press:  31 January 2011

M. Andrés-Vergés
Affiliation:
Departamento de Química Inorgánica, Universidad de Extremadura, Avda. Elvas s/n. 06071-Badajoz, Spain
C. Fern´andez-González
Affiliation:
Departamento de Química Inorgánica, Universidad de Extremadura, Avda. Elvas s/n. 06071-Badajoz, Spain
M. Martínez-Gallego
Affiliation:
Departamento de Química Inorgánica, Universidad de Extremadura, Avda. Elvas s/n. 06071-Badajoz, Spain
J. D. Solier
Affiliation:
Departamento de Física, Universidad de Extremadura, Avda. Elvas s/n. 06071-Badajoz, Spain
I. Cachadiña
Affiliation:
Departamento de Física, Universidad de Extremadura, Avda. Elvas s/n. 06071-Badajoz, Spain
E. Matijević
Affiliation:
Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699–5814
Get access

Abstract

A new route for obtaining calcium-deficient apatites with a Ca/P ratio lower than 1.5 is described, in order to study their proton conduction at temperatures lower than 400 °C. The process is based on the hydrolysis of a mixed solution of Ca(NO3)2 and NH4H2PO4 in the presence of hexamethylenetetramine at a pH of approximately 5 and temperatures of 85–90 °C. The resulting spherical particles of 14 μm in average diameter were aggregates of smaller needles with approximate composition Ca8.5(HPO4)2(PO4)4OH · H2O. The effects of the reagent concentrations, pH, aging time, and temperature were studied, and the solids were characterized by x-ray diffraction, infrared absorption spectroscopy, and electron microscopy. The ionic conduction measured by alternating-current impedance spectroscopy yielded a value of 3 μSm−1 at 200 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Le Geros, R.Z., Calcium Phosphates in Oral Biology and Medicine, Monographs in Oral Science Vol. 15, edited by Myers, H. M. (Karger, Basel, 1991).Google Scholar
2.Bett, J.A.S, Christner, L.G., and Hall, W.K., J. Am. Chem. Soc. 89, 5535 (1967).CrossRefGoogle Scholar
3.Imizu, Y., Kadoya, M., Abe, H., Itoh, H., and Tada, A., Chem. Lett. 415 (1982).CrossRefGoogle Scholar
4.Suzuki, T., Hatsushika, T., and Hayakawa, Y., J. Chem. Soc. Faraday Trans. 1 77, 1059 (1981).CrossRefGoogle Scholar
5.Suzuki, T., Hatsushika, T., and Miyake, M., J. Chem. Soc. Faraday Trans. 1 78, 3605 (1982).CrossRefGoogle Scholar
6.Nagai, M., Nishino, T., and Saeki, T., Sens. Actuators 15, 145 (1988).CrossRefGoogle Scholar
7.Yamashita, K., Owada, H., Umegaki, T., Kanazawa, T., and Futagami, T., Solid State Ionics 28–30, 660 (1988).CrossRefGoogle Scholar
8.Yamashita, K., Kitagaki, K., and Umegaki, T., J. Am. Ceram. Soc. 78, 1191 (1995).CrossRefGoogle Scholar
9.Chandra, S., in Proton Conductors in Superionic Solids and Solid Electrolites, edited by Laskar, A. and Chandra, S. (Academic Press, Boston, 1990), p. 185.Google Scholar
10.Joris, S.J. and Amberg, C.H., J. Phys. Chem. 75, 3167 (1971).CrossRefGoogle Scholar
11.Joris, S.J. and Amberg, C.H., J. Phys. Chem. 75, 3172 (1971).CrossRefGoogle Scholar
12.Brown, W.E., Mathew, M., and Chow, L.C., in Roles of Octacalcium Phosphate in Surface Chemistry of Apatites in Adsorption on/in Surface Chemistry of Hydroxyapatite, edited by Misra, D.N. (Plenum Press, New York, 1984).Google Scholar
13.Andrés-Vergés, M., Fernández-González, C., and Martínez-Gallego, M., J. Eur. Ceram. Soc. 18, 1245 (1998).CrossRefGoogle Scholar
14.Matsuda, K., Kaneko, Y., Fei, H.J., Fujita, K., and Mitsuzawa, S., Proc. Fac. Sci. Tokai Univ. 27, 73 (1992).Google Scholar
15.Fowler, B.O., Moreno, E.C., and Brown, W.E., Arch. Oral Biol. 11, 477 (1966).CrossRefGoogle Scholar
16.Berry, E.E. and Baddiel, C.B., Spectrochim. Acta, Part A 23, 1781 (1967).CrossRefGoogle Scholar
17.LeGeros, R.Z., Daculsi, G., Orly, I., Abergas, T., and Torres, W., Scanning Microscopy 3, 129 (1989).Google Scholar
18.Baddiel, C.B. and Berry, E.E., Spectrochim. Acta 22, 1407 (1966).CrossRefGoogle Scholar
19.Fowler, B.O., Inorg. Chem. 13, 194 (1974).CrossRefGoogle Scholar
20.González-Díaz, P.F. and Hidalgo, A., Spectrochim. Acta, Part A 32, 631 (1976).CrossRefGoogle Scholar
21.Privman, V., Goia, D.V., and Matijević, E., J. Colloid Interface Sci. 213, 36 (1999).CrossRefGoogle Scholar
22.Goia, D.V. and Matijević, E., Colloids Surf. 146, 139 (1999).CrossRefGoogle Scholar
23.Kretsinger, R.H. and Nelson, D.J., Coord. Chem. Rev. 18, 29 (1976).CrossRefGoogle Scholar
24.Cachadiña, F., Solier, J.D., and Dominguez-Rodriguez, A., Bol. Soc. Esp. Ceram. Vid. 37, 238 (1998).Google Scholar
25.Macdonald, J.R., Impedance Spectroscopy (Wiley, New York, 1987).Google Scholar
26.Williams, G., Watts, D.C., Dev, S.B., and North, A.M., Trans. Faraday Soc. 67, 1323 (1970).CrossRefGoogle Scholar