Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T21:19:29.471Z Has data issue: false hasContentIssue false

A new Mg65Cu7.5Ni7.5Zn5Ag5Y10 bulk metallic glass with strong glass-forming ability

Published online by Cambridge University Press:  03 March 2011

H. Ma
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, People's Republic of China
E. Ma
Affiliation:
Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
J. Xu*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, People's Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report a new Mg-based bulk metallic glass-forming alloy: Mg65Cu7.5Ni7.5Zn5 Ag5Y10. The alloy exhibits a glass-forming ability significantly stronger than all previously discovered Mg-based glass formers. Fully glassy rods 9 mm in diameter can be obtained by using copper mold casting. The critical cooling rate for glass formation was estimated to be <50 Ks−1. The reduced glass-transition temperature (Trg) of the glass was determined to be 0.59.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Johnson, W.L., Mater. Res. Soc. Bull. 24(10), 42 (1999).CrossRefGoogle Scholar
2.Inoue, A., Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
3.Inoue, A. and Takeuchi, A., Mater. Trans. 43, 1892 (2002).CrossRefGoogle Scholar
4.Inoue, A., Kato, A., Zhang, T., Kim, S.G., and Masumoto, T., Mater. Trans. JIM 32, 609 (1991).CrossRefGoogle Scholar
5.Inoue, A., Nakamura, T., Nishiyama, N., and Masumoto, T., Mater. Trans. JIM 33, 937 (1992)CrossRefGoogle Scholar
6.Busch, R., Liu, W., and Johnson, W.L., J. Appl. Phys. 83, 4134 (1998).CrossRefGoogle Scholar
7.Kang, H.G., Park, E.S., Kim, W.T., Kim, D.H., and Cho, H.K., Mater. Trans. JIM 41, 846 (2000).CrossRefGoogle Scholar
8.Park, E.S., Kang, H.G., Kim, W.T., and Kim, D.H., Non-Cryst, J.. Solids 279, 154 (2001).Google Scholar
9.Men, H., Hu, Z.Q., and Xu, J., Scripta Mater. 46, 699 (2002).CrossRefGoogle Scholar
10.Amiya, K. and Inoue, A., Mater. Trans. JIM 41, 1460 (2000).CrossRefGoogle Scholar
11.Amiya, K. and Inoue, A., Mater. Trans. JIM 42, 543 (2001).CrossRefGoogle Scholar
12.Lin, X.H. and Johnson, W.L., J. Appl. Phys. 78, 6514 (1995).CrossRefGoogle Scholar
13.Turnbull, D., Contemp. Phys. 10, 473 (1969).CrossRefGoogle Scholar
14.Lu, Z.P., Li, Y., and Ng, S.C., Non-Cryst, J.. Solids. 270, 103 (2000).Google Scholar
15.Murty, S.S. and Hono, K., Mater. Trans. JIM 41, 1538 (2000).CrossRefGoogle Scholar
16.Chen, H.S. and Turnbull, D., Acta Metall. 17, 1021 (1969).CrossRefGoogle Scholar
17.Inoue, A., Mater. Trans. JIM 36, 866 (1995).CrossRefGoogle Scholar
18.Wanliuk, T.A., Schroers, J., and Johnson, W.L., Appl. Phys. Lett. 78, 1213 (2001).CrossRefGoogle Scholar
19.Inoue, A., Zhang, W., Zhang, T., and Kurosaka, K., Acta Metall. 49, 2645 (2001).Google Scholar
20.Inoue, A., Zhang, T., and Masumoto, T., Non-Cryst, J.. Solids 156–158, 473 (1993).Google Scholar
21.Greer, A.L., Nature 366, 303 (1993).CrossRefGoogle Scholar
22.Desré, P.J., Mater. Trans. JIM 38, 583 (1997).Google Scholar
23.Egami, T., Mater. Trans. 43, 510 (2002).CrossRefGoogle Scholar