Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-07T18:52:09.927Z Has data issue: false hasContentIssue false

A new method for fabricating high performance polymeric thin films by chemical vapor polymerization

Published online by Cambridge University Press:  31 January 2011

Justin F. Gaynor*
Affiliation:
Texas Instruments Semiconductor Process / Device Center, 13536 N. Central Expressway, 75243 P.O. Box 655012, MS 944, Dallas, Texas 75265
J. Jay Senkevich
Affiliation:
Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, 213 Holden Hall, Blacksburg, Virginia 24601–0237
Seshu B. Desu
Affiliation:
Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, 213 Holden Hall, Blacksburg, Virginia 24601–0237
*
a) Author to whom correspondence should be addressed.
Get access

Abstract

A vacuum deposition method is presented in which copolymer films are grown from a vinylic monomer chosen for desirable properties and paraxylylene. The concentration of paraxylylene in the final copolymer can be negligibly small if proper deposition conditions, presented here for the first time, are employed. Films of paraxylylene with N-phenyl maleimide deposited at 40 °C, for example, showed thermal stability and FTIR spectra nearly identical with homopolymers of poly(N-phenyl maleimide). Different rate-limiting steps are proposed to explain film composition; paraxylylene is under surface reaction control, while the comonomer obeys mass flow control. This results in a deposition environment extremely rich in comonomer. Growth rates and compositions were consistent with predictions. The initiation reaction did not appear different from homopolymerization of paraxylylene. The general method presented here allows fabrication of vapor-deposited thin films with properties limited primarily by the comonomer employed.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Corley, R., Haas, H., Kane, M., and Livington, D., J. Polym. Sci. XIII, 137 (1954).CrossRefGoogle Scholar
2.Cariou, F., Valley, D., and Loeb, W., IEEE Proc. Elec. Pack. Conf. PMP-1, s54 (1965).Google Scholar
3.Gorham, W., J. Polym. Sci. A-1 4, 3027 (1966).CrossRefGoogle Scholar
4.Gorham, W., Adv. Chemistry Series 91, 643 (1969).CrossRefGoogle Scholar
5.Spivak, M. and Ferrante, G., J. Electrochem. Soc.: Electrochem. Techn., 1592 (1969).CrossRefGoogle Scholar
6.Swarc, M., Polym. Eng. Sci. 16 (7) 473 (1976).CrossRefGoogle Scholar
7.Beach, W. and Austin, T., 2nd Int. SAMPE Electronics Conf., 25 (1988).Google Scholar
8.Lang, C., Yang, G., Moore, J., and Lu, T., in Low-Dielectric Constant Materials—Synthesis and Applications in Microelectronics, edited by Lu, T-M., Murarka, S. P., Kuan, T.S., and Ting, C.H. (Mater. Res. Soc. Symp. Proc. 381, Pittsburgh, PA, 1995), pp. 4549.Google Scholar
9.Gorham, W. and Niegisch, W., Encyclo. Polym. Sci. 15, 98 (1971).Google Scholar
10.Beach, W., Lee, C., Bassett, D., Austin, T., and Olson, R., Encyclo. Polym. Sci. Tech. 17, 990 (1988).Google Scholar
11.Aleksandrova, L. and Vera-Graziano, R., in Polymeric Materials Encyclopedia: Synthesis, Properties and Applications (CRC Press, Boca Raton, FL, 1995).Google Scholar
12.Beach, W., Macromolecules 11 (1), 72 (1978).CrossRefGoogle Scholar
13.Gaynor, J., Desu, S., and Senkevich, J., Macromolecules 28, 73437348 (1995).CrossRefGoogle Scholar
14.Sochilin, V., Mailyan, K., Aleksandrova, L., Nikolaev, A., Pebalk, A., and Kardash, I., Dokl. Akad. Nauk SSSR 319 (1), 173176 (1991).Google Scholar
15.Gaynor, J. and Desu, S., J. Mater. Res. 9, 31253130 (1994).CrossRefGoogle Scholar
16.Gaynor, J. and Desu, S., J. Mater. Res. 11, 236242 (1996).CrossRefGoogle Scholar
17.Mayo, F. and Lewis, F., J. Am. Chem. Soc. 66, 1594 (1944).CrossRefGoogle Scholar
18.Beach, W., Proc. 3rd Int. SAMPE Electronics Conf., 78 (1989).Google Scholar
19.Kubo, S., Ph.D. Thesis, Rensselaer Polytechnic Institute (1972).Google Scholar
20.Ohring, M., The Materials Science of Thin Films (Academic Press, New York, 1992).Google Scholar
21.Gazicki, M., Surendran, G., James, W., and Yasuda, H., J. Polym. Sci., Polym. Chem. 23, 22552277 (1985).CrossRefGoogle Scholar
22.Gazicki, M., Surendran, G., James, W., and Yasuda, H., J. Polym. Sci., Polym. Chem. 24, 215240 (1986).CrossRefGoogle Scholar
23.Kubo, S. and Wunderlich, B., J. Appl. Phys. 42, (12), 45584565 (1971).CrossRefGoogle Scholar
24.Kubo, S. and Wunderlich, B., J. Polym. Sci.: Polym. Phys. 10, 19491966 (1972).Google Scholar
25.Sharma, A., J. Polym. Sci. A, Polym. Chem. 26, 29532971 (1988).CrossRefGoogle Scholar
26.Trieber, G., Böhlke, K., Weitz, A., and Wunderlich, B., J. Polym. Sci., Polym. Phys. 11, 11111116 (1973).CrossRefGoogle Scholar
27.Yasuda, H., Yeh, Y., and Fusselman, S., Pure Appl. Chem. 62 (9), 16891698 (1990).CrossRefGoogle Scholar
28.Aleksandrova, L., Shundina, L., Gerasimov, G., and Kardash, I., Polym. Sci. 35 (4), 361366 (1993).Google Scholar
29.Christopher, A., Fritzsche, A., and Wright, A., Photochemistry of Macromolecules (Plenum Press, New York, 1970), p. 117.CrossRefGoogle Scholar
30.Mathur, M. and Weir, N., J. Mol. Struct. 15, 459463 (1973).CrossRefGoogle Scholar
31.Jellinek, H. and Lipovac, S., J. Polym. Sci. A-1 8, 25172534 (1970).CrossRefGoogle Scholar
32.Joesten, B., J. Appl. Polym. Sci. 18 (2), 439 (1974).CrossRefGoogle Scholar