Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T00:23:07.818Z Has data issue: false hasContentIssue false

A new hybrid two-zone/crucible furnace process for the growth of epitaxial Tl2Ba2CaCu2O8 superconducting films

Published online by Cambridge University Press:  31 January 2011

M. P. Siegal
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185–1421
D. L. Overmyer
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185–1421
E. L. Venturini
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185–1421
F. Dominguez
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185–1421
R. R. Padilla
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185–1421
Get access

Abstract

Epitaxial Tl2Ba2CaCu2O8 (Tl-2212) films ∼5500 Å thick are grown on LaAlO3(100) substrates using a new hybrid two-zone/crucible furnace process enabling precise control of thallination. This method combines the best features of both conventional crucible and two-zone processing for the first time: superb film properties and reduced handling of hazardous Tl-oxide powders. Single-phase, highly caxis oriented Tl-2212 films are grown with smooth morphology, Meissner transition ∼103 K, and critical current density ∼1.1 × 107 A/cm2 at 5 K for twenty consecutive runs without having to change or add to the Tl-oxide source.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Siegal, M. P., Venturini, E. L., Morosin, B., and Aselage, T. L., J. Mater. Res. 12, 2825 (1997), and references within.CrossRefGoogle Scholar
2.Aselage, T. L., Venturini, E. L., and Van Deusen, S. B., J. Appl. Phys. 75, 1023 (1994).CrossRefGoogle Scholar
3.Ginley, D. S., Kwak, J. J., Hellmer, R. P., Baughman, R. J., Venturini, E. L., and Morosin, B., Appl. Phys. Lett. 53, 406 (1988).CrossRefGoogle Scholar
4.Lee, W. Y., Lee, V. Y., Salem, J., Huang, T. C., Savoy, R., Bullick, D. C., and Parkin, S. S. P., Appl. Phys. Lett. 53, 329 (1988).CrossRefGoogle Scholar
5.Siegal, M. P., Overmyer, D. L., Venturini, E. L., Newcomer, P. P., Dunn, R., Dominguez, F., Padilla, R. R., and Sokolowski, S. S., IEEE Trans. Appl. Supercond. 7, 1881 (1997).CrossRefGoogle Scholar
6.Siegal, M. P., Missert, N., Venturini, E. L., Newcomer, P. P., Dominguez, F., and Dunn, R., IEEE Trans. Appl. Supercond. 5, 1343 (1995).CrossRefGoogle Scholar
7.Siegal, M. P., Venturini, E. L., Newcomer, P. P., Overmyer, D. L., Dominguez, F., and Dunn, R., J. Appl. Phys. 78, 7186 (1995).CrossRefGoogle Scholar
8.Siegal, M. P., Overmyer, D. L., and Dominguez, F., U.S. Patent Application (pending).Google Scholar
9.Gyorgy, E. M., van Dover, R. B., Jackson, K. A., Schneemeyer, L. F., and Waszczak, J. V., Appl. Phys. Lett. 55, 283 (1989).CrossRefGoogle Scholar
10.Holstein, W. L., Parisi, L. A., Wilker, C., and Flippen, R. B., Appl. Phys. Lett. 60, 2014 (1992).CrossRefGoogle Scholar