Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T11:50:21.913Z Has data issue: false hasContentIssue false

Near-zero thermal expansion and phase transition in In0.5(ZrMg)0.75Mo3O12

Published online by Cambridge University Press:  27 September 2016

Luciana P. Prisco
Affiliation:
Departamento de Engenharia Química e de Materiais, Pontifícia Universidade Católica, 22451-900 Rio de Janeiro, RJ, Brasil
Patricia I. Pontón
Affiliation:
Departamento de Engenharia Química e de Materiais, Pontifícia Universidade Católica, 22451-900 Rio de Janeiro, RJ, Brasil
Waldeci Paraguassu
Affiliation:
Faculdade de Física, Universidade Federal do Pará, Belém, PA 66075-110, Brasil
Carl P. Romao
Affiliation:
Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
Mary Anne White
Affiliation:
Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Institute for Research in Materials, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; and Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
Bojan A. Marinkovic*
Affiliation:
Departamento de Engenharia Química e de Materiais, Pontifícia Universidade Católica, 22451-900 Rio de Janeiro, RJ, Brasil
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Physical properties of In0.5(ZrMg)0.75Mo3O12, including the coefficient of thermal expansion, phase stability, hygroscopicity, and decomposition temperature have been thoroughly studied by in situ x-ray powder diffraction, Raman spectroscopy and thermal methods. These investigations show that In0.5(ZrMg)0.75Mo3O12 exists in a monoclinic phase (P21/a) at room temperature and transforms to an orthorhombic (Pbcn) phase at ∼82 °C. In the orthorhombic form this material presents intrinsic near-zero thermal expansion (−0.16 × 10−6 K−1) in the range between 100 and 500 °C. The phase is not hygroscopic, but starts to decompose into its constituent oxides at temperatures higher than 700 °C. In comparison to the end member phase ZrMgMo3O12 in the In2Mo3O12–ZrMgMo3O12 solid solution, In0.5(ZrMg)0.75Mo3O12 is less promising for near room-temperature applications due to the phase transition from monoclinic to orthorhombic slightly above room temperature. However, the orthorhombic phase of In0.5(ZrMg)0.75Mo3O12 has potential for applications that require zero thermal expansion at temperatures higher than 100 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Evans, J.S.O., Mary, T.A., and Sleight, A.W.: Negative thermal expansion in a large molybdate and tungstate family. J. Solid State Chem. 133, 580 (1997).Google Scholar
Romao, C.P., Miller, K.J., Whitman, C.A., White, M.A., and Marinkovic, B.A.: Negative thermal expansion (thermomiotic) materials. In Comprehensive Inorganic Chemistry II, Vol. 4, Reedijk, J. and Poeppelmeier, K., eds. (Elsevier: Oxford, 2013); p. 128151.Google Scholar
Lind, C.: Two decades of negative thermal expansion research: Where do we stand? Materials 5(6), 1125 (2012).Google Scholar
Evans, J.S.O.: Negative thermal expansion materials. J. Chem. Soc., Dalton Trans. 19, 3317 (1999).Google Scholar
Evans, J.S.O., Mary, T.A., and Sleight, A.W.: Negative thermal expansion materials. Phys. B Condens. Matter. 241–243, 311 (1997).CrossRefGoogle Scholar
Sumithra, S. and Umarji, A.M.: Negative thermal expansion in rare earth molybdates. Solid State Sci. 8(12), 1453 (2006).Google Scholar
Ari, M., Jardim, P.M., Marinkovic, B.A., Rizzo, F., and Ferreira, F.F.: Thermal expansion of Cr2 xFe2−2x Mo3O12, Al2x Fe2−2x Mo3O12 and Al2x Cr2−2x Mo3O12 solid solutions. J. Solid State Chem. 181(6), 1472 (2008).Google Scholar
Varga, T., Moats, J.L., Ushakov, S.V., and Navrotsky, A.: Thermochemistry of A2M3O12 negative thermal expansion materials. J. Mater. Res. 22(9), 2512 (2007).Google Scholar
Goodwin, A.L., Wells, S.A., and Dove, M.T.: Cation substitution and strain screening in framework structures: The role of rigid unit modes. Chem. Geol. 225(3–4), 213 (2006).CrossRefGoogle Scholar
Miller, K.J., Johnson, M.B., White, M.A., and Marinkovic, B.A.: Low-temperature investigations of the open-framework material HfMgMo3O12 . Solid State Commun. 152(18), 1748 (2012).CrossRefGoogle Scholar
Evans, J.S.O. and Mary, T.A.: Structural phase transitions and negative thermal expansion in Sc2(MoO4)3 . Int. J. Inorg. Mater. 2(1), 143 (2000).Google Scholar
Marinkovic, B.A., Jardim, P.M., de Avillez, R.R., and Rizzo, F.: Negative thermal expansion in Y2Mo3O12 . Solid State Sci. 7(11), 1377 (2005).CrossRefGoogle Scholar
Marinkovic, B.A., Ari, M., de Avillez, R.R., Rizzo, F., Ferreira, F.F., Miller, K.J., Johnson, M.B., and White, M.A.: Correlation between AO6 polyhedral distortion and negative thermal expansion in orthorhombic Y2Mo3O12 and related materials. Chem. Mater. 21(13), 2886 (2009).CrossRefGoogle Scholar
Wu, M.M., Zu, Y., Peng, J., Liu, R.D., Hu, Z.B., Liu, Y.T., and Chen, D.F.: Controllable thermal expansion properties of In2−x Cr x Mo3O12 . Cryst. Res. Technol. 47(7), 793 (2012).Google Scholar
Romao, C.P., Perras, F.A., Werner-Zwanziger, U., Lussier, J.A., Miller, K.J., Calahoo, C.M., Zwanziger, J.W., Bieringer, M., Marinkovic, B.A., Bryce, D.L., and White, M.A.: Zero thermal expansion in ZrMgMo3O12: NMR crystallography reveals origins of thermoelastic properties. Chem. Mater. 27(7), 2633 (2015).Google Scholar
Miller, K.J., Romao, C.P., Bieringer, M., Marinkovic, B.A., Prisco, L.P., and White, M.A.: Near-zero thermal expansion in In(HfMg)0.5Mo3O12 . J. Am. Ceram. Soc. 96(2), 561 (2012).Google Scholar
Song, W., Yuan, B., Liu, X., Li, Z., Wang, J., and Liang, E.: Tuning the monoclinic-to-orthorhombic phase transition temperature of Fe2Mo3O12 by substitutional co-incorporation of Zr4+ and Mg2+ . J. Mater. Res. 29(7), 849 (2014).Google Scholar
Gindhart, A.M., Lind, C., and Green, M.: Polymorphism in the negative thermal expansion material magnesium hafnium tungstate. J. Mater. Res. 23(1), 210 (2008).Google Scholar
Marinkovic, B.A., Jardim, P.M., Ari, M., De Avillez, R.R., Rizzo, F., and Ferreira, F.F.: Low positive thermal expansion in HfMgMo3O12 . Phys. Status Solidi 245(11), 2514 (2008).Google Scholar
Song, W.B., Liang, E.J., Liu, X.S., Li, Z.Y., Yuan, B.H., and Wang, J.Q.: A negative thermal expansion material of ZrMgMo3O12 . Chin. Phys. Lett. 30(12), 126502 (2013).Google Scholar
Song, W.B., Wang, J.Q., Li, Z.Y., Liu, X.S., Yuan, B.H., and Liang, E.J.: Phase transition and thermal expansion property of Cr2−x Zr0.5x Mg0.5x Mo3O12 solid solution. Chin. Phys. B 23(6), 066501 (2014).Google Scholar
Li, F., Liu, X., Song, W., Yuan, B., Cheng, Y., Yuan, H., Cheng, F., Chao, M., and Liang, E.: Phase transition, crystal water and low thermal expansion behavior of Al2−2x (ZrMg) x W3O12·n(H2O). J. Solid State Chem. 218, 15 (2014).Google Scholar
Suzuki, T. and Omote, A.: Zero thermal expansion in (Al2x (HfMg)1−x )(WO4)3 . J. Am. Ceram. Soc. 89(2), 691 (2006).Google Scholar
Sleight, A.W. and Brixner, L.H.: A new ferroelastic transition in some A2(MO4)3 molybdates and tungstates. J. Solid State Chem. 7(2), 172 (1973).Google Scholar
Marinkovic, B.A., Ari, M., Jardim, P.M., de Avillez, R.R., Rizzo, F., and Ferreira, F.F.: In2Mo3O12: A low negative thermal expansion compound. Thermochim. Acta 499(1–2), 48 (2010).Google Scholar
Pley, M. and Wickleder, M.S.: Two crystalline modifications of RuO4 . J. Solid State Chem. 178(10), 3206 (2005).Google Scholar
Paraguassu, W., Maczka, M., Filho, A.G.S., Freire, P.T.C., Melo, F.E.A., Filho, J.M., and Hanuza, J.: A comparative study of negative thermal expansion materials Sc2(MoO4)3 and Al2(WO4)3 crystals. Vib. Spectrosc. 44(1), 69 (2007).Google Scholar
Wojdyr, M.: Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr. 43(5 Part 1), 1126 (2010).Google Scholar
Sivasubramanian, V., Ravindran, T.R., Nithya, R., and Arora, A.K.: Structural phase transition in indium tungstate. J. Appl. Phys. 96(1), 387 (2004).Google Scholar
Torres Dias, A.C., Luz Lima, C., Paraguassu, W., Pereira Da Silva, K., Freire, P.T.C., Mendes Filho, J., Marinkovic, B.A., Miller, K.J., White, M.A., and Souza Filho, A.G.: Pressure-induced crystal-amorphous transformation in Y2Mo3O12 . Vib. Spectrosc. 68, 251 (2013).Google Scholar
Maczka, M., Paraguassu, W., Souza Filho, A.G., Freire, P.T.C., Mendes Filho, J., Melo, F.E.A., and Hanuza, J.: High-pressure Raman study of Al2(WO4)3 . J. Solid State Chem. 177(6), 2002 (2004).Google Scholar
Li, Q.J., Yuan, B.H., Song, W.B., Liang, E.J., and Yuan, B.: The phase transition, hygroscopicity, and thermal expansion properties of Yb2−x Al x Mo3O12 . Chin. Phys. B 21(4), 046501 (2012).Google Scholar
Ravindran, T.R., Sivasubramanian, V., and Arora, A.K.: Low temperature Raman spectroscopic study of scandium molybdate. J. Phys. Condens. Matter 17(2), 277 (2005).Google Scholar
Harrison, W.T.A., Cheetham, A.K., and Faber, J.: The crystal structure of aluminum molybdate, Al2(MoO4)3, determined by time-of-flight powder neutron diffraction. J. Solid State Chem. 76(2), 328 (1988).Google Scholar
Evans, J.S.O., Mary, T.A., and Sleight, A.W.: Negative thermal expansion in Sc2(WO4)3 . J. Solid State Chem. 137(1), 148 (1998).Google Scholar
Srikanth, V., Subbarao, E.C., and Rao, G.V.: Thermal expansion anisotropy, microcracking and acoustic emission of Nb2O5 ceramics. Ceram. Int. 18(4), 251 (1992).Google Scholar
Jardim, P.M., Garcia, E.S., and Marinkovic, B.A.: Young's modulus, hardness and thermal expansion of sintered Al2W3O12 with different porosity fractions. Ceram. Int. 42(4), 5211 (2016).Google Scholar
Carter, C.B. and Norton, M.G.: Ceramic Materials (Springer, New York, NY, 2013).Google Scholar
Supplementary material: File

Prisco supplementary material

Figures S1-S3 and Table S1

Download Prisco supplementary material(File)
File 552.4 KB