Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T23:44:53.075Z Has data issue: false hasContentIssue false

Nanostructured TiO2 modified by perfluoropolyethers: Gas phase photocatalytic activity

Published online by Cambridge University Press:  31 January 2011

Giuseppe Cappelletti
Affiliation:
Dipartimento di Chimica Fisica ed Elettrochimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
Giuseppina Cerrato
Affiliation:
Dipartimento di Chimica IFM & NIS-Interdept. Excellence Centre, Università di Torino, via Pietro Giuria, 7, 10125 Torino, Italy
Maurizio Sansotera
Affiliation:
Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano, via Mancinelli 7, 20131, Milano, Italy
Get access

Abstract

A high-molecular-weight perfluoropolyether (PFPE-YR) and a perfluoropolyether containing ammonium phosphate (PFPE-F10) have been evaluated as fluorinated coating for high-surface-area titanium oxides. Coated nano-TiO2 shows hydrophobic properties and excellent buoyancy on water. In addition to photoactivity toward the degradation of toluene in gas phase, specific trial analyses have been completed to estimate the modified titanium oxide features. Brunauer–Emmett–Teller (BET) analysis for the surface area determination, ultraviolet-visible spectroscopy (UV-Vis) for the material electronic band gap, high-resolution transmission electron microscopy (HRTEM), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) for the morphology, structure, and surface composition, respectively, and water contact angle and infrared (IR) analysis have been performed to estimate the wettability and stability of coated titanium.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Linsebigler, A.L., Lu, G., Yates, J.T. Jr.Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95, 735 (1995)CrossRefGoogle Scholar
2.Parkin, I.P., Palgrave, R.G.Self-cleaning coatings. J. Mater. Chem. 15, 1689 (2005)CrossRefGoogle Scholar
3.Bico, J., Marzolin, C., Quéré, D.Pearl drops. Europhys. Lett. 47, 220 (1999)CrossRefGoogle Scholar
4.Shibuichi, S., Onda, T., Satoh, N., Tsujii, K.Super water-repellent surfaces resulting from fractal structure. J. Phys. Chem. 100, 19512 (1996)CrossRefGoogle Scholar
5.Coulson, S.R., Woodward, I., Badyal, J.P.S., Brewer, S.A., Willis, C.Super-repellent composite fluoropolymer surfaces. J. Phys. Chem. B 104, 8836 (2000)CrossRefGoogle Scholar
6.Chen, W., Fadeev, A., Hsieh, M.C., Oner, D.Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples. Langmiur 15, 3395 (1999)CrossRefGoogle Scholar
7.Zhang, X., Jin, M., Liu, Z., Tryk, D.A., Nishimoto, S., Murakami, T., Fujishima, A.Superhydrophobic TiO2 surfaces: Preparation, photocatalytic wettability conversion, and superhydrophobic-superhydrophilic patterning. J. Phys. Chem. C 111, 14521 (2007)CrossRefGoogle Scholar
8.Risse, G., Matys, S., Bottcher, H.Investigation into the photo-induced change in wettability of hydrophobized TiO2 films. Appl. Surf. Sci. 254, 5994 (2008)CrossRefGoogle Scholar
9.Fabiyi, M.E., Skelton, R.L.Photocatalytic mineralization of methylene blue using buoyant TiO2-coated polystyrene beads. J. Photochem. Photobiol., A 132, 121 (2000)CrossRefGoogle Scholar
10.Kuwahara, Y., Maki, K., Matsumura, Y., Kamegawa, T., Mori, K., Yamashita, H.Hydrophobic modification of a mesoporous silica surface using a fluorine-containing silylation agent and its application as an advantageous host material for the TiO2 photocatalyst. J. Phys. Chem. C 113, 1552 (2009)CrossRefGoogle Scholar
11.Yuan, S., Shi, L., Mori, K., Yamashita, H.Preparation of highly dispersed TiO2 in hydrophobic mesopores by simultaneous grafting and fluorinating. Microporous Mesoporous Mater. 117, 356 (2009)CrossRefGoogle Scholar
12.Sianesi, D., Marchionni, G., De Pasquale, R.J.Perfluoropolyethers (PFPEs) from perfluoroolefin photooxidationOrganofluorine Chemistry Principles and Commercial Applications edited by R.E. Banks, B.E. Smart, J.C. Tatlow (Plenum Press, New York, NY 1994)431CrossRefGoogle Scholar
13.Vecellio, M.Opportunities and developments in fluoropolymeric coatings. Prog. Org. Coat. 40, 225 (2000)CrossRefGoogle Scholar
14.Wang, H., Fang, J., Cheng, T., Ding, J., Qu, L., Dai, L., Wang, X., Lin, T.One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity. Chem. Commun. (Camb.) 7, 877 (2008)CrossRefGoogle Scholar
15.Russo, A., Navarrini, W.Perfluoro-4-methyl-1,3-dioxole: A new monomer for high-Tg amorphous fluoropolymers. J. Flourine Chem. 125, 73 (2004)CrossRefGoogle Scholar
16.French, R.H., Wheland, R.C., Qiu, W., Lemon, M.F., Zhang, E., Gordon, J., Petrov, V.A., Cherstkov, V.F., Celaygina, N.I.Novel hydrofluorocarbon polymers for use as pellicles in 157 nm semiconductor photolithography: Fundamentals of transparency. J. Flourine Chem. 122, 63 (2003)CrossRefGoogle Scholar
17.Mikeš, F., Yang, Y., Teraoka, I., Ishigure, T., Koike, Y., Okamoto, Y.Synthesis and characterization of an amorphous perfluoropolymer: Poly(perfluoro-2-methylene-4-methyl-1,3-dioxolane). Macromolecules 38, 4237 (2005)CrossRefGoogle Scholar
18.Russo, A., Tonelli, C., Barchiesi, E.New developments in the synthesis and characterization of phosphate esters of linear (per)fluoropolyether monofunctional and difunctional macromonomers. J. Polym. Sci. Pol. Chem. 43, 4790 (2005)CrossRefGoogle Scholar
19.Ardizzone, S., Bianchi, C.L., Cappelletti, G., Gialanella, S., Pirola, C., Ragaini, V.Tailored anatase/brookite nanocrystalline TiO2. The optimal particle features for liquid and gas-phase photocatalytic reactions. J. Phys. Chem. C 111, 13222 (2007)CrossRefGoogle Scholar
20.Cappelletti, G., Bianchi, C.L., Ardizzone, S.Nano-titania assisted photoreduction of Cr(VI). The role of the different TiO2 polymorphs. Appl. Catal. B-Environ. 78, 193 (2008)CrossRefGoogle Scholar
21.Bianchi, C.L., Ardizzone, S., Cappelletti, G., Naldoni, A., Pirola, C.Photocatalytic degradation of toluene in the gas phase. Relationship between the surface species and the catalytic features. Environ. Sci. Technol. 42, 6671 (2008)Google Scholar
22.Bianchi, C.L., Cappelletti, G., Ardizzone, S., Gialanella, S., Naldoni, A., Oliva, C., Pirola, C.N-doped TiO2 from TiCl3 for photodegradation of air pollutants. Catal. Today 144, 31 (2009)CrossRefGoogle Scholar
23.Marchionni, G., Ajroldi, G., Pezzin, G.Structure-property relationships in perfluoropolyethers: A family of polymeric oilsComprehensive Polymer Science Second Supplement, edited by S.L. Aggarwal and S. Russo (Pergamon, London, England 1996)347Google Scholar
24.Marchionni, G., Staccione, A. Process for preparing controller molecular weight perfluoropolyethers having perfluoroalkyl or perfluorochloroalkyl end groups. US Patent 5, 446 206 (1995)Google Scholar
25.Russo, A., Tonelli, C. Process for obtaining mixtures of phosphoric mono- and diesters. US Patent 6, 653 495 (2003)Google Scholar
26.JCPDS-ICDD card n. 21-1272 International Centre for Diffraction Data Newtown Square, PA (2002)Google Scholar
27.Cappelletti, G., Ardizzone, S., Bianchi, C.L., Gialanella, S., Naldoni, A., Pirola, C., Ragaini, V.Photodegradation of pollutants in air: Enhanced properties of nano-TiO2 prepared by ultrasound. Nanoscale Res. Lett. 4, 97 (2009)CrossRefGoogle Scholar
28.Colthup, N.B., Daly, L.H., Wiberley, S.E.Introduction to Infrared and Raman Spectroscopy 3rd ed. (Academic Press, New York 1990)Google Scholar