Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-24T13:20:23.881Z Has data issue: false hasContentIssue false

Nanostructured carbon generated by chemical vapor deposition from acetylene on surfaces pretreated by a combination of physical and chemical methods

Published online by Cambridge University Press:  31 January 2011

Andrea Siska
Affiliation:
Applied and Environmental Chemistry Departments, University of Szeged, H-6720 Szeged, Rerrich Bála tér 1, Hungary
Zoltán Kónya
Affiliation:
Applied and Environmental Chemistry Departments, University of Szeged, H-6720 Szeged, Rerrich Bála tér 1, Hungary
Klára Hernádi
Affiliation:
Applied and Environmental Chemistry Departments, University of Szeged, H-6720 Szeged, Rerrich Bála tér 1, Hungary
Imre Kiricsi
Affiliation:
Applied and Environmental Chemistry Departments, University of Szeged, H-6720 Szeged, Rerrich Bála tér 1, Hungary
Krisztián Kordás
Affiliation:
Department of Experimental Physics, University of Szeged, H-6720 Szeged, Dóm tér 9, Hungary
Róbert Vajtai
Affiliation:
Department of Experimental Physics, University of Szeged, H-6720 Szeged, Dóm tér 9, Hungary
Get access

Abstract

Chemical vapor deposition of carbon nanotubes by catalytic decomposition of acetylene on V2O5 microtube crystals is presented. The catalyst was prepared by laser irradiation of vanadium sheets and treated with cobalt acetate solution. The carbon deposits generated on this novel type of catalyst were characterized by transmission electron microscopy measurements. Both carbon nanofibers and carbon nanotubes were found to be formed. This catalyst system, generated by the combined laser irradiation and chemical impregnation methods, is a new and promising way to study the differences in the mechanism of the generation of nanostructures.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chambers, A., Park, C., Baker, R.T.K, and Rodrigez, N.M., J. Phys. Chem. B 102, 4253 (1998).Google Scholar
2. Wang, Q. and Johnson, J.K., J. Phys. Chem. B 103, 277 (1999).Google Scholar
3. Chu, A., Cook, J., Heesom, R.J.R, Hutchison, J.L., Green, M.L.H, and Sloan, J., Chem. Mater. 8, 2751 (1996).Google Scholar
4. Pradhan, B.K., Kyotani, T., and Tomita, A., Chem. Commun. (14), 1317 (1999).CrossRefGoogle Scholar
5. Sloan, J., Wright, D.M., Woo, H-G., Bailey, S., Browa, G., York, A.P.E, Coleman, K.S., Hutchinson, J.L., and Green, M.L.H, Chem. Commun. (8), 699 (1999).CrossRefGoogle Scholar
6. Kiang, C.H., Choi, J-S., Tran, T.T., and Bacher, A.D., J. Phys. Chem. B 103, 7449 (1999).Google Scholar
7. Ajayan, P.M. and Iijima, S., Nature 361, 333 (1993).CrossRefGoogle Scholar
8. Yoshida, Y., Appl. Phys. Lett. 22, 64 (1994).Google Scholar
9. Tsang, S.C., Chen, Y.K., Harris, P.J.F, and Green, M.L.H, Nature 372, 159 (1994).CrossRefGoogle Scholar
10. Avouris, Ph., Hertel, T., Martel, R., Schmidt, T., Shea, H.R., and Walkup, R.E., Appl. Surf. Sci. 141, 201 (1999).CrossRefGoogle Scholar
11. Campbell, J.K., Sun, L., and Crooks, R.M., J. Am. Chem. Soc. 121, 3779 (1999).CrossRefGoogle Scholar
12. Hu, J., Ouyang, M., Yang, P., and Lieber, C.M., Nature 399, 48 (1999).CrossRefGoogle Scholar
13. Ajayan, P.M., Chem. Rev. 99, 1787 (1999).Google Scholar
14. Iijima, S., Nature 354, 56 (1991).CrossRefGoogle Scholar
15. Pan, Z.W., Xie, S.S., Chang, B.H., Sun, L.F., Zhou, W.Y., and Wang, G., Chem. Phys. Lett. 299, 97 (1999).Google Scholar
16. Kyotani, T., Tsai, L-F., and Timita, A., Chem. Mater. 7, 1427 (1995).CrossRefGoogle Scholar
17. Cassel, A.M., Franklin, N.R., Tombler, T.W., Chan, E.M., Han, J., and Dai, H., J. Am. Chem. Soc. 121, 7975 (1999).CrossRefGoogle Scholar
18. Huang, S., Dai, L., and Mau, A.W.H, J. Phys. Chem. B 103, 4223 (1999).CrossRefGoogle Scholar
19. Hernadi, K., Fonseca, A., Nagy, J.B., Fudala, A., and Lukas, A.A., Zeolites 17, 416 (1996).CrossRefGoogle Scholar
20. Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C., and Haddon, R.C., Science 282, 95 (1998).CrossRefGoogle Scholar
21. Abatemarco, T., Stikkel, J., Belfort, J., Frank, B.P., Ajayan, P.M., and Belfort, G., J. Phys. Chem. B 103, 3534 (1999).CrossRefGoogle Scholar
22. Mickelson, E.T., Chiang, I.W., Zimmerman, J.L., Boul, J.P., Lozano, J., Liu, J., Smalley, R.E., Hauge, R.H., and Margrave, J.L., J. Phys. Chem. B 103, 4318 (1999).Google Scholar
23. Sumanasekera, G.U., Allen, J.L., Fang, S.L., Loper, A.L., Rao, A.M., and Eklund, P.C., J. Phys. Chem. B 103, 4292 (1999).Google Scholar
24. Chen, Y., Chen, J., Hu, H., Hamon, M.A., Itkis, M.E., and Haddon, R.C., Chem. Phys. Lett. 299, 532 (1999).Google Scholar
25. Rochefort, A., Salahub, D.R., and Avouris, P., J. Phys. Chem. B 103, 641 (1999).CrossRefGoogle Scholar
26. Srivastava, D., Brenner, D.W., Schall, J.D., Ausman, K.D., Yu, M.F., and Ruoff, R.S., J. Phys. Chem. B 103, 4330 (1999).CrossRefGoogle Scholar
27. Kokai, F., Takahashi, K., Yudasaka, M., Yamada, R., Ichihahsi, T., and Iijima, S., J. Phys. Chem. B 103, 4346 (1999).Google Scholar
28. Chen, P., Wu, X., Lin, J., and Tan, K.L., J. Phys. Chem. B 103, 4559 (1999).CrossRefGoogle Scholar
29. Pradhan, B.K., Toba, T., Kyotani, T., and Tomita, A., Chem. Mater. 10, 2510 (1998).CrossRefGoogle Scholar
30. Bobyrev, V.A., Bunkin, F.V., Deli, E., Kirichenko, N.A., Luk'yanchuk, B.S., Nanai, L., Simakin, A.V., Hevesi, I., and Shafeev, G.A., Kvantovaya Elektronika 9, 1943 (1982).Google Scholar
31. Kiss, J.G., Nanai, L., Hevesi, I., and Farkas, Z., Microscopy 40, 150 (1983).Google Scholar
32. Bunkin, F.V., Kirichenko, N.A., Luk'yanchuk, B.S., Simakhin, A.V., Shafeev, G.A., Nanai, L., and Hevesi, I., Acta Physica Hungarica 54, 111 (1983).Google Scholar
33. Ursu, I., Nanu, L., Dinescu, M., Henung, A., Mihailescu, I.N., Nistor, L.C., Szil, E., Kovacs, J., Hevesi, I., and Nanai, L., Appl. Phys. A 35, 103 (1984).CrossRefGoogle Scholar
34. Nanai, L., Hevesi, I., Bunkin, F.V., Luk'yanchuk, B.S., Shafeev, G.A., and Alimov, D.T., Infrared Phys. 25, 141 (1985).Google Scholar
35. Nanai, L., Hevesi, I., Bunkin, F.V., Luk'yanchuk, B.S., and Morozova, E.A., J. Appl. Phys. 61, 2633 (1987).CrossRefGoogle Scholar
36. Vajtai, R., Janicsko-Csaty, J., Thien-Nga, L., Bonard, L-M., and Forro, L., AIP Conf. Proc. 486, 226 (1999).Google Scholar
37. Nanai, L., Vajtai, R., Hevesi, I., Jelski, D.A., and George, T.F., Thin Solid Films 227, 13 (1993).Google Scholar
38. Nanai, L. and George, T.F., J. Mater. Res. 12, 283 (1997).Google Scholar
39. Ajayan, P.M., Stephan, O., Redlich, Ph., and Colliex, C., Nature 375, 546 (1995).Google Scholar
40. Laurent, C., Flahaut, E., Peigney, A., and Rousset, A., New J. Chem. 22, 1229 (1998).Google Scholar
41. Kiss, L.B., Vajtai, R., and Ajayan, P.M., Phys. Status Solidi B 214/1, R3 (1999).Google Scholar
42. Maser, W.K., Lambert, J.M., Ajayan, P.M., Stephan, O., and Bernier, P., Synth. Met. 77, 243 (1996).Google Scholar
43. Takizawa, M., Bandow, S., Torii, T., and Iijima, S., Chem. Phys. Lett. 302, 146 (1999).Google Scholar
44. Yudasaka, M., Ichiashi, T., and Iijama, S., J. Phys. Chem. B 102, 10201 (1998).CrossRefGoogle Scholar
45. Yudasaka, M., Kokai, F., Takahashi, K., Yamada, R., Sensui, N., Ichihashi, T., and Iijama, S., J. Phys. Chem. B 103, 3576 (1999).Google Scholar
46. Mukhopadhyay, K., Koshio, A., Sugai, T., Tanaka, N., Shinohara, H., Kónya, Z., and Nagy, B., J. Chem. Phys. Lett. 303, 117 (1999).CrossRefGoogle Scholar
47. Flahaut, E., Govindaraj, A., Peigney, A., Laurent, Ch., Rousset, A., and Rao, C.N.R, Chem. Phys. Lett. 300, 236 (1999).CrossRefGoogle Scholar
48. Cassell, A.M., Raymakers, J.A., Kong, J., and Dai, H., J. Phys. Chem. B 103, 6484 (1999).Google Scholar
49. Anderson, P.E. and Rodrigez, N.M., J. Mater. Res. 14, 2912 (1999).Google Scholar
50. de Boer, F.R., Boom, R., Mattens, W.C.M, Miedema, A.R., and Niessen, A.K., Cohesion in Metals: Transition Metal Alloys (North-Holland, Amsterdam, 1988), p. 147.Google Scholar