Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T05:06:44.984Z Has data issue: false hasContentIssue false

Nanoscale characterization of nautilus shell structure: An example of natural self-assembly

Published online by Cambridge University Press:  01 June 2006

R. Velázquez-Castillo*
Affiliation:
Texas Materials Instituteand Department of Chemical Engineering, University of Texas, Austin, Texas 78712; and Centro de Física Aplicada y Tecnología Avanzada, UNAM, Querétaro 76000, México
J. Reyes-Gasga
Affiliation:
Texas Materials Instituteand Department of Chemical Engineering, University of Texas, Austin, Texas 78712; and Instituto de Física UNAM, México D.F. 01000, México
D.I. García-Gutierrez
Affiliation:
Texas Materials Instituteand Department of Chemical Engineering, University of Texas, Austin, Texas 78712
M. Jose-Yacaman
Affiliation:
Texas Materials Instituteand Department of Chemical Engineering, University of Texas, Austin, Texas 78712
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Structural characterization at the nanometric scale of the Nautilus sp shell was carried out by high-resolution transmission electron microscopy and high-angle annular dark field to understand how the organic and inorganic components are related. The inorganic phase that built the shell is made of calcium carbonate (CaCO3), with the orthorhombic unit cell of the aragonite, in a texturized arrangement in such a way that the c-axis is always perpendicular to the shell surface. The organic material forms films through the plates. We observed for a very first time some aragonite nanocrystals embedded in the organic matrix. This observation supports the hypothesis that the proteins and other organic compounds guide the crystal growth because the organic matrixes are the places where the nanocrystals grow.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wang, J., Xu, Y., Zhao, Y., Huang, Y., Wang, D., Jiang, L., Wu, J., Xu, D.: Morphology and crystalline characterization of abalone shell and mimetic mineralization. J. Cryst. Growth 252, 367 (2003).CrossRefGoogle Scholar
2.Lin, A., Andre, M.: Growth and structure in abalone shell. Mater. Sci. Eng. A 390, 27 (2005).CrossRefGoogle Scholar
3.Tsuno, H., Kagi, H., Akagi, T.: Effects of trace lanthanum ion on the stability of vaterite and transformation from vaterite to calcite in an aquatic system. Bull. Chem. Soc. Jpn. 74, 479 (2001).CrossRefGoogle Scholar
4.Zaremba, C.M., Belcher, A.M., Fritz, M., Li, Y., Mann, S., Hansma, P.K., Morse, D.E., Speck, J.S., Stucky, G.D.: Critical transitions in the biofabrication of abalone shell and flat pearls. Chem. Mater. 8, 679 (1996).CrossRefGoogle Scholar
5.Wada, K.: Nucleation and growth of aragonite crystals in the nacre of some bivalve molluscs. Biomineralization 6, 141 (1972).Google Scholar
6.Wise, S.W.: Microarchitecture and mode of formation of nacre (mother of pearl) in Pelecypods. Gastropods Cephalopods Eclogae Geol Helv. 63, 775 (1970).Google Scholar
7.Rousseau, M., Lopez, E., Stempflé, P., Brendlé, M., Franke, L., Guette, A., Naslai, R., Bourrat, X.: Multiscale structure of sheet nacre. Biomaterials 26, 6254 (2005).CrossRefGoogle ScholarPubMed
8.Checa, A.G., Rodriguez-Navarro, A.B.: Self organization of nacre in the shell of Pterioida (Bivalvia: Mollusca). Biomaterials 26, 1071 (2005).CrossRefGoogle ScholarPubMed
9.Addadi, L., Weiner, S.: Biomineralization: Chemical and Biochemical Perspectives (VCH, New York, 1989).Google Scholar
10.Greenfield, E.M., Chrenshaw, M.A.: Origin, Evolution and Modern Aspects of Biomineralization in Plants and Animals (Plenum Press, New York, 1989) pp. 303308.CrossRefGoogle Scholar
11.Fritz, M., Belcher, A.M., Radmacher, M., Walters, D.A., Hansma, P.K., Stucky, G.D., Morse, D.E., Mann, S.: Flat pearls from biofabrication of organized composites on inorganic substrates. Nature 371, 49 (1994).CrossRefGoogle Scholar
12.Belcher, A.M., Wu, X.H., Christensen, R.J., Hansma, P.K., Stucky, G.D., Morse, D.E.: Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 381, 56 (1996).CrossRefGoogle Scholar
13.Addadi, L., Weiner, S.: A pavement of pearl. Nature 389, 912 (1997).CrossRefGoogle Scholar
14.Bevan, D.J., Rossmanith, E., Mylrea, D.K., Ness, S.E., Tylor, M.R., Cuff, C.: On the structure of aragonite: Lawrence Bragg revisited. Acta Cryst. B 58, 448 (2002).CrossRefGoogle ScholarPubMed
15.Song, F., Zhang, X.H., Bai, Y.L.: Microstructure and characterization in the organic matrix layers of nacre. J. Mater. Res. 17, 1567 (2002).CrossRefGoogle Scholar
16.Zhu, Z., Tong, H., Ren, Y., Hu, J.: Meretrix lusoria: A natural biocomposite: In situ analysis of hierarchical fabrication and micro-hardness. J. Mater. Res. 37, 35 (2006).Google ScholarPubMed
17.Aizenberg, J., Albeck, S., Weiner, S., Addadi, L.: Crystal-protein interactions studied by overgrowth of calcite on biogenic skeletal elements. J. Cryst. Growth 142, 156 (1994).CrossRefGoogle Scholar
18.Gunnison, K., Sarikaya, M., Liu, J., and Aksay, I.A.: Structure-mechanical property relationships in a biological ceramic-polymer composite: Nacre, in Hierarchically Structured Materials edited by Aksay, I.A., Baer, E., Sarikaya, M., and Tirrell, D.A. (Mater. Res. Soc. Symp. Proc. 255, Pittsburgh, PA, 1992) pp. 171183.Google Scholar
19.Towe, K.M., Hamilton, G.H.: Ultrastructure and inferred calcification of the mature and developing nacre in bivalve mollusk. Calcif. Tissue Res. 1, 306 (1968).CrossRefGoogle Scholar
20.Wang, L., Tang, R., Bonstein, T., Orme, C.A., Bush, P.J., Nancollas, G.H.: A new model for nanoscale enamel dissolution. J. Phys. Chem. B 109, 999 (2005).CrossRefGoogle ScholarPubMed
21.Liu, C., Twesten, R.D., Gibson, M.: High-angle annular dark-field imaging of self-assembled Ge islands on Si (001). Ultramicroscopy 87, 79 (2001).CrossRefGoogle Scholar
22.Howie, A., Marks, L.D., Pennycook, S.J.: New imaging methods for catalyst particles. Ultramicroscopy 8, 163 (1992).CrossRefGoogle Scholar
23.Browning, N.D., Wallis, D.J., Nellist, P.D., Pennycook, S.J.: EELS in the STEM: Determination of materials properties on the atomic scale. Micron 28, 333 (1997).CrossRefGoogle Scholar