Published online by Cambridge University Press: 31 January 2011
Nanophase elemental Fe powders prepared by mechanical milling were sinter forged to full density with an average grain size in the nanophase range (below 100 nm). If Cu additions are introduced during milling to form supersaturated solid solutions (Fe85Cu15 and Fe60Cu40), grain sizes can be easily controlled to below 50 nm after consolidation. For Fe–Cu, it was observed that atomic level alloying between the two elements during milling was very helpful for obtaining a homogeneous microstructure and nanocrystalline grain/domain sizes in the consolidated product. The advantages of using sinter forging (upset die forging), as well as the role of the Cu addition, in the retention of nanocrystalline grain sizes are discussed. The consolidated Fe alloys exhibit very high strength under compression, further demonstrating that low populations of flaws and nanophase grain structures were attained in the consolidated products.