Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T11:21:44.014Z Has data issue: false hasContentIssue false

Nanophase Fe Alloys Consolidated to Full Density from Mechanically Milled Powders

Published online by Cambridge University Press:  31 January 2011

L. He
Affiliation:
Mechanical Engineering Department, Louisiana State University, Baton Rouge, Louisiana 70803
L. F. Allard
Affiliation:
High Temperature Materials Laboratory, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
K. Breder
Affiliation:
High Temperature Materials Laboratory, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
E. Ma
Affiliation:
Mechanical Engineering Department, Louisiana State University, Baton Rouge, Louisiana 70803
Get access

Abstract

Nanophase elemental Fe powders prepared by mechanical milling were sinter forged to full density with an average grain size in the nanophase range (below 100 nm). If Cu additions are introduced during milling to form supersaturated solid solutions (Fe85Cu15 and Fe60Cu40), grain sizes can be easily controlled to below 50 nm after consolidation. For Fe–Cu, it was observed that atomic level alloying between the two elements during milling was very helpful for obtaining a homogeneous microstructure and nanocrystalline grain/domain sizes in the consolidated product. The advantages of using sinter forging (upset die forging), as well as the role of the Cu addition, in the retention of nanocrystalline grain sizes are discussed. The consolidated Fe alloys exhibit very high strength under compression, further demonstrating that low populations of flaws and nanophase grain structures were attained in the consolidated products.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See for example, Proceedings of NANO'98, Nanostruct. Mater. 12, Part A and Part B, Special Issue (1999).Google Scholar
2.Koch, C.C., in Materials Science and Technology, edited by Cahn, R.W., Hassen, P., and Kramer, E.J. (VCH, Weinheim, Germany, 1991), Vol. 15, p. 193.Google Scholar
3.Carsley, J.E., Milligan, W.W., Hackney, S.A., and Aifantis, E.C., Metall. Trans. A. 26, 2479 (1995);Google Scholar
Shaik, G.R. and Milligan, W.W., Metall. Maters. Trans. A 28, 895 (1997).CrossRefGoogle Scholar
4.Carsley, J.E., Milligan, W.W., Hackney, S.A., and Aifantis, E.C., Metall. Mater. Trans. A 29, 2261 (1998).CrossRefGoogle Scholar
5.Rawers, J.C. and Korth, G., Nanostruct. Mater. 7, 25 (1996).CrossRefGoogle Scholar
6.Perez, R.J., Huang, B., and Lavernia, E.J., Nanostruct. Mater. 7, 565 (1996).Google Scholar
7.Malow, T.R., Koch, C.C., Miraglia, P.Q., and Murty, K.L., Mater. Sci. Eng. A 252, 36 (1998).Google Scholar
8.Malow, T.R. and Koch, C.C., Acta Mater. 45, 2177 (1997).CrossRefGoogle Scholar
9.Koch, C.C. (private communications).Google Scholar
10.He, L. and Ma, E., J. Mater. Res. 11, 72 (1996).Google Scholar
11.He, L. and Ma, E., Nanostruct. Mater. 7, 327 (1996);Google Scholar
He, L., Allard, L.F. and Ma, E., Nanostruct. Mater. 12, 543 (1999).Google Scholar
12.Xu, J., He, J.H., and Ma, E., Metall. Trans. A 28, 1569 (1997).Google Scholar
13.Hausner, H.H. and Mal, M.K., Handbook of Powder Metallurgy, 2nd ed. (Chemical Publishing, New York, 1982), p. 260;Google Scholar
German, R.M., Powder Metallurgy Science, 2nd ed. (Metal Powder Industries Federation, Princeton, NJ, 1994), p. 321.Google Scholar
14.Eckert, J., Holzer, J.C., Krill, C.E. III, and Johnson, W.L., J. Mater. Res. 7, 1751 (1992).CrossRefGoogle Scholar
15.Goodrich, D.M. and Atzmon, M., Mater. Sci. Forum 225, 223 (1996).Google Scholar
16.Eckert, J., Holzer, J.C., Krill, C.E. III, and Johnson, W.L., J. Appl. Phys. 73, 2794 (1993).Google Scholar
17.Ma, E., Atzmon, M., and Pinkerton, F., J. Appl. Phys. 74, 955 (1993).Google Scholar
18.Morris, D.G. and Morris, M.A., Acta Metall. Mater. 39, 1763 (1991).CrossRefGoogle Scholar
19.Biselli, C. and Morris, D.G., Acta Mater. 44, 493 (1996).Google Scholar
20.Holtz, R.L. and Provenzano, V., Nanostruct. Mater. 4, 241 (1994).CrossRefGoogle Scholar
21.Malow, T.R. and Koch, C.C., Metall. Mater. Trans. A29, 2285 (1998).Google Scholar
22.He, L. and Ma, E., Mater. Sci. Eng. A 204, 240 (1995).CrossRefGoogle Scholar
23.Vance, R.R. and Courtney, T.H., Scr. Metall. Mater. 26, 1435 (1992).Google Scholar
24.Hahn, H., Logas, J., and Averback, R.S., J. Mater. Res. 5, 609 (1990).CrossRefGoogle Scholar
25.Hahn, H. and Gleiter, H., Scr. Metall. 13, 3 (1979).Google Scholar
26.Eckert, J., Holzer, J.C., and Johnson, W.L., J. Appl. Phys. 73, 131 (1993).Google Scholar
27.Schaffer, G.B., Scr. Metall. Mater. 27, 1 (1992).Google Scholar
28.Ostwaldt, D., Klepaczko, J.R., and Klimanik, P.J., J. Phys IV 7, C3385 (1997).Google Scholar
29.da Silva, M.G. and Ramesh, K.T., Int. J. Plast. 13, 587 (1997).Google Scholar
30.Sanders, P.G., Eastman, J.A., and Weertman, J.R., Acta Mater. 45, 4019 (1997).CrossRefGoogle Scholar
31.Wang, N., Wang, Z., Aust, K.T., and Erb, U., Acta Metall. Mater. 43, 519 (1995).Google Scholar
32.Van Swygenhoven, H. and Caro, A., Appl. Phys. Lett. 71, 12 (1997).Google Scholar
33.Schiotz, J., DiTolla, F.D., and Jacobsen, K.W., Nature 391, 561 (1998).Google Scholar
34.Carsley, J.E., Ph.D. Thesis, Michigan Technological University (1996), p. 73.Google Scholar
35.Jia, D., Ramesh, K.T., and Ma, E., Script. Mater. 42, 73 (2000).Google Scholar
36.Malow, T. and Koch, C.C., Acta Mater. 46, 6459 (1998).Google Scholar