Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T09:10:20.394Z Has data issue: false hasContentIssue false

Nanoparticles with affinity for biopolymer: Bioassisted room-temperature selective multistacking of inorganic particles on biopolymer film

Published online by Cambridge University Press:  31 January 2011

Mitsuo Umetsu*
Affiliation:
Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8579, Japan
Takamitsu Hattori
Affiliation:
Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8579, Japan
Shinsuke Kikuchi
Affiliation:
Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8579, Japan
Itsuki Muto
Affiliation:
Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8579, Japan
Takeshi Nakanishi
Affiliation:
Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8579, Japan
Hideki Watanabe
Affiliation:
Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8579, Japan
Izumi Kumagai*
Affiliation:
Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8579, Japan
*
a)Address all correspondence to these authors. e-mail: [email protected]
b)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Recently, we selected the antibody fragment with high affinity for the biopolymer film of polyhydroxybutyrate (PHB) from human antibody fragment libraries. In this study, we functionalized CdSe quantum dot (QD) nanoparticles by orderly conjugating the anti-PHB antibody fragments to perform spontaneous and selective stacking of inorganic particles on PHB-coated plates in neutral solutions at room temperature. Surface plasmon resonance analysis showed that the orderly clustering of anti-PHB antibody fragment on QD particles led to no dissociation of QD on PHB-coated plates, indicating the availability of avidity effect. The strong spontaneous immobilization using biomolecular recognition enabled stepwise stacking of inorganic particles on PHB-coated plates only by mixing operation in neutral solutions at room temperature. We show the potential of recombinant anti-material antibody fragments for the bottom-up stacking procedures for hybrid assembly.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hou, L., Hou, Q., Mo, Y., Peng, J., Cao, Y.: All-organic flexible polymer microcavity light-emitting diodes using 3M reflective multilayer polymer mirrors. Appl. Phys. Lett. 87, 243504 2005CrossRefGoogle Scholar
2Briseno, A.L., Mannsfeld, S.C.B., Ling, M.M., Liu, S., Tseng, R.J., Reese, C., Roberts, M.E., Yang, Y., Wudl, F., Bao, Z.: Patterning organic single-crystal transistor arrays. Nature 444, 913 2006CrossRefGoogle ScholarPubMed
3Jiang, F., Lee, G-B., Tai, Y-C., Ho, C-M.: A flexible micromachinebased shear-stress sensor array and its application to separation-point detection. Sens. Actuators, A 79, 194 2000CrossRefGoogle Scholar
4Whaley, S.R., English, D.S., Hu, E.L., Barbara, P.F., Belcher, A.M.: Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405, 665 2000CrossRefGoogle ScholarPubMed
5Mao, C., Solis, D.J., Reiss, B.D., Kottmann, S.T., Sweeney, R.Y., Hayhurst, A., Georgiou, G., Iverson, B., Belcher, A.M.: Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 303, 213 2004CrossRefGoogle ScholarPubMed
6Keren, K., Berman, R.S., Buchstab, E., Sivan, U., Braun, E.: DNA-templated carbon nanotube field-effect transistor. Science 302, 1380 2003CrossRefGoogle ScholarPubMed
7Zin, M.T., Ma, H., Sarikaya, M., Jen, A.K-Y.: Assembly of gold nanoparticles using genetically engineered polypeptides. Small 1, 698 2005CrossRefGoogle ScholarPubMed
8Park, T.J., Lee, S.Y., Lee, S.J., Park, J.P., Yang, K.S., Lee, K-B., Ko, S., Park, J.B., Kim, T., Kim, S.K., Shin, Y.B., Chung, B.H., Ku, S-J., Kim, D.H., Choi, I.S.: Protein nanopatterns and biosensors using gold binding polypeptide as a fusion partner. Anal. Chem. 78, 7197 2006CrossRefGoogle ScholarPubMed
9Sarikaya, M., Tamerler, C., Jen, A.K.Y., Schulten, K., Baneyx, F.: Molecular biomimetics: Nanotechnology through biology. Nat. Mater. 2, 9 2003CrossRefGoogle ScholarPubMed
10Watanabe, H., Tsumoto, K., Taguchi, S., Yamashita, K., Doi, Y., Nishimiya, Y., Kondo, H., Umetsu, M., Kumagai, I.: A human antibody fragment with high affinity for biodegradable polymer film. Bioconjug. Chem. 18, 645 2007CrossRefGoogle ScholarPubMed
11Schnirman, A.A., Zahavi, E., Yeger, H., Rosenfeld, R., Benhar, I., Reiter, Y., Sivan, U.: Antibody molecules discriminate between crystalline facets of a gallium arsenide semiconductor. Nano Lett. 6, 1870 2006CrossRefGoogle Scholar
12Hattori, T., Umetsu, M., Nakanishi, T., Tsumoto, K., Ohara, S., Abe, H., Naito, M., Asano, R., Adschiri, T., Kumagai, I.: Grafting of material-binding function into antibodies. Functionalization by peptide grafting. Biochem. Biophys. Res. Commun. 365, 751 2008CrossRefGoogle ScholarPubMed
13Cloutier, S., Couty, S., Terskikh, A., Marguerat, L., Crivelli, V., Pugnières, M., Mani, J., Leisinger, H., Mach, J., Deperthes, D.: Streptabody, a high avidity molecule made by tetramerization of in vivo biotinylated, phage display-selected scFv fragments on streptavidin. Mol. Immunol. 37, 17 2000CrossRefGoogle ScholarPubMed
14Umetsu, M., Tsumoto, K., Hara, M., Ashish, K., Goda, S., Adschiri, T., Kumagai, I.: How additives influence the refolding of immunoglobulin-folded proteins in a stepwise dialysis system. Spectroscopic evidence for highly efficient refolding of a single-chain Fv fragment. J. Biol. Chem. 278, 11 2003CrossRefGoogle Scholar
15Umetsu, M., Mizuta, M., Tsumoto, K., Ohara, S., Takami, S., Watanabe, H., Kumagai, I., Adschiri, T.: Bioassisted room-temperature immobilization and mineralization of zinc oxide—The structural ordering of ZnO nanoparticles into a flower-type morphology. Adv. Mater. 17, 21 2005CrossRefGoogle Scholar
16Tamerler, C., Duman, M., Oren, E., Gungormus, M., Xiong, X., Kacar, T., Parviz, B., Sarikaya, M.: Materials specificity and directed assembly of a gold-binding peptide. Small 2, 1372 2006CrossRefGoogle ScholarPubMed
17Sano, K., Yoshii, S., Yamashita, I., Shiba, K.: In aqua structuralization of a three-dimensional configuration using biomolecules. Nano Lett. 7, 10 2007CrossRefGoogle ScholarPubMed
18Sanghvi, A.B., Miller, K.P-H., Belcher, A.M., Schmidt, C.E.: Biomaterials functionalization using a novel peptide that selectively binds to a conducting polymer. Nat. Mater. 4, 496 2005CrossRefGoogle ScholarPubMed
19Rheinnecker, M., Hardt, C., Ilag, L.L., Kufer, P., Gruber, R., Hoess, A., Lupas, A., Rottenberger, C., Plückthun, A., Pack, P.: Multivalent antibody fragments with high functional affinity for a tumor-associated carbohydrate antigen. J. Immunol. 157, 2989 1996CrossRefGoogle ScholarPubMed
20Leggett, R., Lee-Smith, E., Jickells, S., Russell, D.: “Intelligent” fingerprinting: Simultaneous identification of drug metabolites and individuals by using antibody-functionalized nanoparticles. Angew. Chem. Int. Ed. Engl. 46, 4100 2007CrossRefGoogle ScholarPubMed