Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T04:10:37.927Z Has data issue: false hasContentIssue false

Nanoparticles for light management in ultrathin chalcopyrite solar cells

Published online by Cambridge University Press:  10 November 2016

Martina Schmid*
Affiliation:
Nanooptische Konzepte für die PV, Helmholtz-Zentrum Berlin, 14109 Berlin, Germany; and Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
Phillip Manley
Affiliation:
Nanooptische Konzepte für die PV, Helmholtz-Zentrum Berlin, 14109 Berlin, Germany
Andreas Ott
Affiliation:
Institut Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin, 14109 Berlin, Germany
Min Song
Affiliation:
Nanooptische Konzepte für die PV, Helmholtz-Zentrum Berlin, 14109 Berlin, Germany; and Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
Guanchao Yin
Affiliation:
Nanooptische Konzepte für die PV, Helmholtz-Zentrum Berlin, 14109 Berlin, Germany
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We evaluate the potential of inserting metallic, metal-dielectric core-shell, and fully dielectric nanoparticles in ultrathin chalcopyrite solar cells to enhance absorption which experiences a significant drop for absorber thicknesses below 500 nm. For different integration positions at the front or at the rear of the solar cell structure theoretical expectations and potential benefits originating from light scattering, near-field enhancement and coupling into waveguide modes by the nanoparticles are presented. These benefits are always balanced against experimental challenges arising for particular geometries due to the very specific fabrication processes of chalcopyrite solar cells. In particular high absorber deposition temperatures as well as contact layers that are relatively thick compared to other devices need to be considered. Based on this, we will need to go beyond some geometries that have proven beneficial for other types of solar cells and identify the most promising configurations for chalcopyrite-based devices.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Winston V. Schoenfeld

This paper has been selected as an Invited Feature Paper.

References

REFERENCES

Morioka, C., Shimazaki, K., Kawakita, S., Imaizumi, M., Yamaguchi, H., Takamoto, T., Sato, S-Î., Ohshima, T., Nakamura, Y., Hirako, K., and Takahashi, M.: First flight demonstration of film-laminated InGaP/GaAs and CIGS thin-film solar cells by JAXA's small satellite in LEO. Prog. Photovoltaics Res. Appl. 19(7), 825 (2011).CrossRefGoogle Scholar
Palm, J., Karg, F., Schneider, H., Kushiya, K., Stolt, L., Tiwari, A.N., Niemi, E., Beck, M., Eberspacher, C., Wohlfart, P., Bayman, A., Schoop, U., Wieting, B., Ramanathan, K., Dimmler, B., Kuhn, C., Whitelegg, S., Rühle, U., Lincot, D., Naghavi, N., Walter, T., Schlatmann, R., Lux-Steiner, M., Kuypers, A., Szyszka, B., Siebentritt, S., Lechner, P., Powalla, M., Noufi, R., and Schock, H.W.: White paper for CIGS thin film solar cell technology. http://cigs-pv.net/ (2015).Google Scholar
Gu, M., Ouyang, Z., Jia, B., Stokes, N., Chen, X., Fahim, N., Li, X., Ventura, M.J., and Shi, Z.: Nanoplasmonics: A frontier of photovoltaic solar cells. Nanophotonics 1(3–4), 235 (2012).CrossRefGoogle Scholar
Pillai, S., Catchpole, K.R., Trupke, T., and Green, M.A.: Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101(9), 093105/1 (2007).CrossRefGoogle Scholar
Atwater, H.A. and Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205 (2010).CrossRefGoogle ScholarPubMed
Ott, A., Ring, S., Yin, G., Calvet, W., Stannowski, B., Lu, Y., Schlatmann, R., and Ballauff, M.: Efficient plasmonic scattering of colloidal silver particles through annealing-induced changes. Nanotechnology 25, 455706 (2014).CrossRefGoogle ScholarPubMed
van Lare, M., Lenzmann, F., and Polman, A.: Dielectric back scattering patterns for light trapping in thin-film Si solar cells. Opt. Express 21(18), 20738 (2013).CrossRefGoogle ScholarPubMed
Grandidier, J., Weitekamp, R.A., Deceglie, M.G., Callahan, D.M., Battaglia, C., Bukowsky, C.R., Ballif, C., Grubbs, R.H., and Atwater, H.A.: Solar cell efficiency enhancement via light trapping in printable resonant dielectric nanosphere arrays. Phys. Status Solidi A 210(2), 255 (2013).CrossRefGoogle Scholar
Schmid, M., Tsakanikas, S., Mangalgiri, G., Andrae, P., Song, M., Yin, G., Riedel, W., and Manley, P.: Nano-optical concept design for light management. In Proc. SPIE 9626, Optical Systems Design 2015: Optical Design and Engineering VI, Vol. 9626, 2015; p. 96260E.Google Scholar
Yin, G., Manley, P., and Schmid, M.: Influence of substrate and its temperature on the optical constants of CuIn1−x Ga x Se2 thin films. J. Phys. D: Appl. Phys. 47(13), 135101 (2014).CrossRefGoogle Scholar
Palik, E.D.: Handbook of Optical Constants of Solids (Academic Press, Cambridge, 1985).Google Scholar
Yin, G., Brackmann, V., Hoffmann, V., and Schmid, M.: Enhanced performance of ultra-thin Cu(In,Ga)Se2 solar cells deposited at low process temperature. Sol. Energy Mater. Sol. Cells 132, 142 (2015).CrossRefGoogle Scholar
Kosiorek, A., Kandulski, W., Chudzinski, P., Kempa, K., and Giersig, M.: Shadow nanosphere lithography: Simulation and experiment. Nano Lett. 4(7), 1359 (2004).CrossRefGoogle Scholar
Moon, G.D., Lee, T.I., Kim, B., Chae, G., Kim, J., Kim, S., Myoung, J-M., and Jeong, U.: Assembled monolayers of hydrophilic particles on water surfaces. ACS Nano 5(11), 8600 (2011).CrossRefGoogle ScholarPubMed
Wu, S., Schell, A.W., Lublow, M., Kaiser, J., Aichele, T., Schietinger, S., Polzer, F., Kühn, S., Guo, X., Benson, O., Ballauff, M., and Lu, Y.: Silica-coated Au/Ag nanorods with tunable surface plasmon bands for nanoplasmonics with single particles. Colloid Polym. Sci. 291(3), 585 (2013).CrossRefGoogle Scholar
Gorelikov, I. and Matsuura, N.: Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles. Nano Lett. 8(1), 369 (2008).CrossRefGoogle ScholarPubMed
Stöber, W., Fink, A., and Bohn, E.: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26(1), 62 (1968).CrossRefGoogle Scholar
West, P.R., Ishii, S., Naik, G.V., Emani, N.K., Shalaev, V.M., and Boltasseva, A.: Searching for better plasmonic materials. Laser Photonics Rev. 4(6), 795 (2010).CrossRefGoogle Scholar
Manley, P., Burger, S., Schmidt, F., and Schmid, M.: Design principles for plasmonic nanoparticle devices. In Progress in Nonlinear Nano-optics, Sakabe, S., Lienau, C., and Grunwald, R. eds.; Springer International Publishing, Berlin, 2015; p. 223.CrossRefGoogle Scholar
Bohren, C.F. and Huffmann, D.R.: Absorption and scattering of light by small particles (Wiley-VCH, New York, 1998).CrossRefGoogle Scholar
Yin, G.: Preparation of Ultra-thin CuIn1−x Ga x Se2 Solar Cells and Their Light Absorption Enhancement (TU Berlin, Berlin, 2015).Google Scholar
Derkacs, D., Lim, S.H., Matheu, P., Mar, W., and Yu, E.T.: Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl. Phys. Lett. 89(9), 093103/1 (2006).CrossRefGoogle Scholar
Nakayama, K., Tanabe, K., and Atwater, H.A.: Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl. Phys. Lett. 93(12), 121904/1 (2008).CrossRefGoogle Scholar
Mertz, J.: Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: A unified description. J. Opt. Soc. Am. B 17(11), 1906 (2000).CrossRefGoogle Scholar
Boyle, J.H., McCandless, B.E., Hanket, G.M., and Shafarman, W.N.: Structural characterization of the (AgCu)(InGa)Se2 thin film alloy system for solar cells. Thin Solid Films 519(21), 7292 (2011).CrossRefGoogle Scholar
Yin, G., Steigert, A., Andrae, P., Goebelt, M., Latzel, M., Manley, P., Lauermann, I., Christiansen, S., and Schmid, M.: Integration of plasmonic Ag nanoparticles as a back reflector in ultra-thin Cu(In,Ga)Se2 solar cells. Appl. Surf. Sci. 355, 800 (2015).CrossRefGoogle Scholar
Yang, Y., Pillai, S., Mehrvarz, H., Kampwerth, H., Ho-Baillie, A., and Green, M.A.: Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons. Sol. Energy Mater. Sol. Cells 101, 217 (2012).CrossRefGoogle Scholar
Tan, H., Santbergen, R., Smets, A.H., and Zeman, M.: Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles. Nano Lett. 12(8), 4070 (2012).CrossRefGoogle ScholarPubMed
Ferry, V.E., Verschuuren, M.A., Li, H.B.T., Verhagen, E., Walters, R.J., Schropp, R.E.I., Atwater, H.A., and Polman, A.: Light trapping in ultrathin plasmonic solar cells. Opt. Express 18(S2), A237 (2010).CrossRefGoogle ScholarPubMed
Manley, P., Schmidt, F., and Schmid, M.: Light extraction from plasmonic particles with dielectric shells and overcoatings. In Renewable Energy and the Environment: Optical Nanostructures and Advanced Materials for Photovoltaics (Optical Society of America, Tucson 2013); PW3B.7.Google Scholar
Chen, B., Zhang, W., Zhou, X., Huang, X., Zhao, X., Wang, H., Liu, M., Lu, Y., and Yang, S.: Surface plasmon enhancement of polymer solar cells by penetrating Au/SiO2 core/shell nanoparticles into all organic layers. Nano Energy 2(5), 906 (2013).CrossRefGoogle Scholar
Xu, Q., Liu, F., Meng, W., and Huang, Y.: Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells. Opt. Express 20(S6), A898 (2012).CrossRefGoogle ScholarPubMed
Saliba, M., Zhang, W., Burlakov, V.M., Stranks, S.D., Sun, Y., Ball, J.M., Johnston, M.B., Goriely, A., Wiesner, U., and Snaith, H.J.: Plasmonic-induced photon recycling in metal halide perovskite solar cells. Adv. Funct. Mater. 25(31), 5038 (2015).CrossRefGoogle Scholar
Schmid, M., Andrae, P., and Manley, P.: Plasmonic and photonic scattering and near fields of nanoparticles. Nanoscale Res. Lett. 9, 50/1 (2014).CrossRefGoogle ScholarPubMed
Akimov, Y.A., Koh, W.S., Sian, S.Y., and Ren, S.: Nanoparticle-enhanced thin film solar cells: Metallic or dielectric nanoparticles? Appl. Phys. Lett. 96(7), 073111 (2010).CrossRefGoogle Scholar
van de Groep, J. and Polman, A.: Designing dielectric resonators on substrates: Combining magnetic and electric resonances. Opt. Express 21(22), 26285 (2013).CrossRefGoogle ScholarPubMed
Schmid, M. and Manley, P.: Nano- and microlenses as concepts for enhanced performance of solar cells. J. Photonics Energy 5(1), 057003 (2014).CrossRefGoogle Scholar
Oraevsky, A.N.: Whispering-gallery waves. Quantum Electron. 32(5), 377 (2002).CrossRefGoogle Scholar
Yin, G., Manley, P., and Schmid, M.: Light absorption enhancement for ultra-thin Cu(In1−x Ga x )Se2 solar cells using closely packed 2-D SiO2 nanosphere arrays. Sol. Energy Mater. Sol. Cells 153, 124 (2016).CrossRefGoogle Scholar
Lin, A., Zhong, Y-K., and Fu, S-M.: The versatile designs and optimizations for cylindrical TiO2-based scatterers for solar cell anti-reflection coatings. Opt. Express 21(S6), A1052 (2013).CrossRefGoogle ScholarPubMed
Simovski, C.R., Shalin, A.S., Voroshilov, P.M., and Belov, P.A.: Photovoltaic absorption enhancement in thin-film solar cells by non-resonant beam collimation by submicron dielectric particles. J. Appl. Phys. 114(10), 103104 (2013).CrossRefGoogle Scholar
Yin, G., Knight, M., van Lare, M-C., Polman, A., and Schmid, M.: Opto-electronic enhancement of ultrathin Cu(In,Ga)Se2 solar cells by nanophotonic contacts. Adv. Opt. Mat., accepted (2016).Google Scholar
van Lare, C., Yin, G., Polman, A., and Schmid, M.: Light coupling and trapping in ultrathin Cu(In,Ga)Se2 solar cells using dielectric scattering patterns. ACS Nano 9(10), 9603 (2015).CrossRefGoogle ScholarPubMed
Vermang, B., Wätjen, J.T., Fjällström, V., Rostvall, F., Edoff, M., Gunnarsson, R., Pilch, I., Helmersson, U., Kotipalli, R., Henry, F., and Flandre, D.: Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se2 solar cells. Thin Solid Films 582, 300 (2015).CrossRefGoogle Scholar
Wang, E-C., Mokkapati, S., White, T.P., Soderstrom, T., Varlamov, S., and Catchpole, K.R.: Light trapping with titanium dioxide diffraction gratings fabricated by nanoimprinting. Prog. Photovoltaics Res. Appl. 22(5), 587 (2014).CrossRefGoogle Scholar