Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-04T19:00:24.510Z Has data issue: false hasContentIssue false

Nanomechanical Probing of Layered Nanoscale Polymer Films With Atomic Force Microscopy

Published online by Cambridge University Press:  03 March 2011

A. Kovalev
Affiliation:
Metal-Polymer Institute, National Academy of Sciences, 246050 Gomel, Belarus
H. Shulha
Affiliation:
Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011
M. Lemieux
Affiliation:
Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011
N. Myshkin
Affiliation:
Metal-Polymer Institute, National Academy of Sciences, 246050 Gomel, Belarus
V.V. Tsukruk*
Affiliation:
Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The approach developed for the microindentation of layered elastic solids was adapted to analyze atomic force microscopy probing of ultrathin (1–100 nm-thick) polymer films on a solid substrate. The model for analyzing microindentation of layered solids was extended to construct two- and tri-step graded functions with the transition zones accounting for a variable gradient between layers. This “graded” approach offered a transparent consideration of the gradient of the mechanical properties between layers. Several examples of recent applications of this model to nanoscale polymer layers were presented. We considered polymer layers with elastic moduli ranging from 0.05 to 3000 MPa with different architecture in a dry state and in a solvated state. The most sophisticated case of a tri-layered polymer film with thickness of 20–50 nm was also successfully treated within this approach. In all cases, a complex shape of corresponding loading curves and elastic modulus depth profiles obtained from experimental data were fitted by the graded functions with nanomechanical parameters (elastic moduli and transition zone widths) close to independently determined microstructural parameters (thickness and composition of layers) of the layered materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Muller, R.S. in Micro/Nanotribology and Its Applications, edited by Bhushan, B. (Kluwer Press, 1997), p. 579.CrossRefGoogle Scholar
2Mate, C.M. and Wu, J. in Microstructure and Microtribology of Polymer Surfaces, edited by Tsukruk, V.V. and Wahl, K. (ACS Symposium Series 741 2000), p. 405.CrossRefGoogle Scholar
3 Micro/Nanotribology and Its Applications, edited byBhushan, B. (Kluwer Press, 1997).Google Scholar
4Tribology Issues and Opportunities in MEMS, edited by Bhushan, B. (Kluwer Academic Press, 1998).CrossRefGoogle Scholar
5Komvopoulos, K., Wear 200 305 (1996).CrossRefGoogle Scholar
6Delamarche, E., Bernard, A., Schmid, H., Michel, B. and Biebuyck, H., Science 276 779 (1997).CrossRefGoogle Scholar
7Chen, X. and Vlassak, J., J. Mater. Res. 16 2974 (2001).CrossRefGoogle Scholar
8Tsukruk, V.V., Adv. Mater. 13 95 (2001).3.0.CO;2-J>CrossRefGoogle Scholar
9Matthews, A., Jones, R. and Dowey, S., Tribol. Lett. 11 103 (2001).CrossRefGoogle Scholar
10Vanlandingham, M.R., McKnight, S.H., Palmese, G.R., Ellings, J.R., Huang, X., Bogetti, T.A., Eduljee, R.F. and Gillespie, J.W., J. Adhes. 64 31 (1997).CrossRefGoogle Scholar
11Bliznyuk, V.N., Everson, M.P. and Tsukruk, V.V., J. Tribol. 120 489 (1998).CrossRefGoogle Scholar
12Kurokawa, T., Gong, J.P. and Osada, Y., Macromolecules 35 8161 (2002).CrossRefGoogle Scholar
13Domke, R. and Radmacher, M., Langmuir 14 3320 (1998).CrossRefGoogle Scholar
14Lemoine, P. and Mc Laughlin, J.Thin Solid Films 339 258 (1999).CrossRefGoogle Scholar
15Eaton, P., Fernandez, E.F., Ewen, R.J., Nevell, T.G., Smith, J.R. and Tsibouklis, J., Langmuir 18 10011 (2002).CrossRefGoogle Scholar
16Gorbunov, V., Fuchigami, N., Stone, M., Grace, M. and Tsukruk, V.V., Biomacromolecules 3 106 (2002).CrossRefGoogle Scholar
17Tsukruk, V.V., Shulha, H. and Zhai, X., Appl. Phys. Lett. 82 907 (2003).CrossRefGoogle Scholar
18Du, B., Tsui, O., Zhang, Q. and He, T., Langmuir 17 3286 (2001).CrossRefGoogle Scholar
19Syed, S.A. Asif, Wahl, K.J., Colton, R.J. and Warren, O.L., J. Appl. Phys. 90 1192 (2001).CrossRefGoogle Scholar
20Tsukruk, V.V. and Huang, Z., Polymer 41 5541 (2000).CrossRefGoogle Scholar
21Oliver, W. and Pharr, G., J. Mater. Res. 7 1564 (1992).CrossRefGoogle Scholar
22Sneddon, I.N., Int. J. Eng. Sci. 3 47 (1965).CrossRefGoogle Scholar
23Johnson, K.L., Kendall, K. and Roberts, A.D., Proc. R. Soc. (London) A 324 301 (1971).Google Scholar
24Pharr, G.M., Oliver, W.C. and Brotzen, F.B., J. Mater. Res. 7 613 (1992).Google Scholar
25Johnson, K.L.Contact Mechanics (Cambridge University Press, Cambridge, 1985).CrossRefGoogle Scholar
26Nix, W.D., Metal. Trans. 20A 2217 (1989).CrossRefGoogle Scholar
27Pharr, G.M. and Oliver, W.C., MRS Bull. 17 28 (1992).CrossRefGoogle Scholar
28Field, J.S. and Swain, M.V., J. Mater. Res. 8 297 (1993).CrossRefGoogle Scholar
29Makushkin, A.P., Friction and Wear 11(3) 423 (1990).Google Scholar
30Chizhik, S.A., Gorbunov, V.V., Luzinov, I., Fuchigami, N. and Tsukruk, V.V., Macromol. Symp. 167 167 (2001).3.0.CO;2-I>CrossRefGoogle Scholar
31Doerner, M.F. and Nix, W.D., J. Mater. Res. 1 601 (1986).CrossRefGoogle Scholar
32King, R.B., Int. J. Solids Struct. 23 1657 (1987).CrossRefGoogle Scholar
33Sawa, T., Akiyama, Y., Shimamoto, A. and Tanaka, K., J. Mater. Res. 14 6 (1999).CrossRefGoogle Scholar
34Gao, H., Chiu, C.H. and Lee, J., Int. J. Solids Struct. 29 2471 (1992).Google Scholar
35Pender, D., Thompson, S., Padture, N., Giannakopoulos, A. and Suresh, S., Acta Mater. 49 3263 (2001).CrossRefGoogle Scholar
36Suresh, S., Science 292 2447 (2001).CrossRefGoogle Scholar
37Giannakopoulos, A.E. and Suresh, S., Int. J. Solid Struct. 34 2357 (1997).CrossRefGoogle Scholar
38Giannakopoulos, A.E. and Suresh, S., Int. J. Solid Struct. 34 2393 (1997).CrossRefGoogle Scholar
39Mencik, J., Munz, D., Quandt, E., Weppelmann, E.R. and Swain, M.V., J. Mater. Res. 12 2475 (1997).CrossRefGoogle Scholar
40Chizhik, S.A., Huang, Z., Gorbunov, V.V., Myshkin, N.K. and Tsukruk, V.V., Langmuir 14 2606 (1998).CrossRefGoogle Scholar
41Tsukruk, V.V. and Gorbunov, V.V., Probe Microscopy 3-4 241 (2002).CrossRefGoogle Scholar
42Johnson, K.L., in Microstructure and Microtribology of Polymer Surfaces, American Chemical Society Symposium Series 741 edited by Tsukruk, V.V. and Wahl, K. (Washington DC, 1998), p. 24.CrossRefGoogle Scholar
43Shulha, H., Kovalev, A., Myshkin, N. and Tsukruk, V.V. (accepted).Google Scholar
44Aklonis, J.J. and MacKnight, W.J.Introduction to Polymer Viscoelasticity (John Wiley & Sons, New York, 1983).Google Scholar
45Tsukruk, V.V., Huang, Z., Chizhik, S.A. and Gorbunov, V.V., J. Mater. Sci. 33 4905 (1998).CrossRefGoogle Scholar
46Shulha, H., Zhai, X. and Tsukruk, V.V., Macromolecules 36 2825 (2003).CrossRefGoogle Scholar
47Hazel, J. and Tsukruk, V.V., Thin Solid Films 339 249 (1999).CrossRefGoogle Scholar
48Radmacher, M., Tillmann, R. and Gaub, H., Biophys. J. 64 735 (1993).CrossRefGoogle Scholar
49Tsukruk, V.V. and Gorbunov, V.V., Microscopy Today 01-1 8 (2001).CrossRefGoogle Scholar
50Luzinov, I., Julthongpiput, D., Liebmann-Vinson, A., Cregger, T., Foster, M.D. and Tsukruk, V.V., Langmuir 16 504 (2000).CrossRefGoogle Scholar
51Lemieux, M., Minko, S., Usov, D., Stamm, M., Shulha, H. and Tsukruk, V.V., Langmuir 19 6126 (2003).CrossRefGoogle Scholar
52Lemieux, M., Usov, D., Minko, S., Stamm, M. and Tsukruk, V.V., Macromolecules 36 7244 (2003).CrossRefGoogle Scholar
53Sidorenko, A., Ahn, H., Kim, D., Yang, H. and Tsukruk, V.V., Wear 252 946 (2002).CrossRefGoogle Scholar
54Tsukruk, V.V., Ahn, H., Kim, D. and Sidorenko, A., Appl. Phys. Lett. 80 4825 (2002).CrossRefGoogle Scholar