Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T00:22:54.809Z Has data issue: false hasContentIssue false

Nanoindentation cracking in gallium arsenide: Part I. In situ SEM nanoindentation

Published online by Cambridge University Press:  22 October 2013

Kilian Wasmer*
Affiliation:
Empa, Swiss Laboratories for Materials Science and Technology, Laboratory for Advanced Materials Processing, 3602 Thun, Switzerland
Cédric Pouvreau
Affiliation:
Empa, Swiss Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, 3602 Thun, Switzerland; and Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Mechanical Systems Design, CH-1015 Lausanne, Switzerland
Jean-Marc Breguet
Affiliation:
EPFL, Laboratory for Mechanical Systems Design, CH-1015 Lausanne, Switzerland
Johann Michler
Affiliation:
Empa, Swiss Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, 3602 Thun, Switzerland
Daniel Schulz
Affiliation:
Department Advanced Technologies, Bookham AG, CH-8045 Zürich, Switzerland
Jacques Henri Giovanola
Affiliation:
Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Mechanical Systems Design, CH-1015 Lausanne, Switzerland
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The nanoindentation fracture behavior of gallium arsenide (GaAs) is examined from two perspectives in two parent papers. The first paper (part I) focuses on in situ nanoindentation within a scanning electron microscope (SEM) and on fractographic observations of cleaved cross-sections of indented regions to investigate the crack field under various indenter geometries. In the second parent paper (part II), cathodoluminescence and transmission electron microscopy are used to investigate the relationship between dislocation and crack fields. The combination of instrumented in situ scanning electron microscopy nanoindentations and cleavage cross-sectioning allows us to establish a detailed map of cracking in the indented region and cracking kinetics for conical and wedge indenter shapes. For wedge nanoindentations, the evolution of the half-penny crack size with the indentation load is interpreted using a simple linear elastic fracture model based on weight functions. Fracture toughness estimates obtained by this technique fall within the range of usual values quoted for GaAs.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wasmer, K., Pouvreau, C., Breguet, J-M., Michler, J., Schulz, D., and Giovanola, J.: Nano-indentation cracking in gallium arsenide: Part II: TEM investigation. J. Mater. Res. 28(20), 27992809 (2013). DOI: 10.1557/jmr.2013.275CrossRefGoogle Scholar
Scannell, D. and Smith, D.: Scribing Compound Semiconductors: An Application Primer, ed. Karl Suss, Suss Report, 1987.Google Scholar
Ure, J.W.: Application of Scribing to Optoelectronic Devices, ed. Karl Suss, Suss Report, 1988.Google Scholar
Loomis Industries: A Fresh Perspective on Scribing and Breaking Applied to Semiconductor Wafer Processing, (2006). www.loomisinc.com.Google Scholar
Wasmer, K., Ballif, C., Gassilloud, R., Pouvreau, C., Rabe, R., Michler, J., Breguet, J.M., Solletti, J-M., Karimi, A., and Schulz, D.: Aspects of cleavage fracture of brittle semiconductors from the nanometre to the centimetre scale. Adv. Eng. Mater. 7, 309 (2005).CrossRefGoogle Scholar
Wasmer, K., Ballif, C., Pouvreau, C., Schulz, D., and Michler, J.: Dicing of gallium-arsenide high performance laser diodes for industrial applications: Part I: Scratching operation. J. Mater. Process. Technol. 198, 114 (2008).CrossRefGoogle Scholar
Wasmer, K., Ballif, C., Pouvreau, C., Schulz, D., and Michler, J.: Dicing of gallium-arsenide high performance laser diodes for industrial applications: Part II: Cleavage operation. J. Mater. Process. Technol. 198, 105 (2008).CrossRefGoogle Scholar
Pouvreau, C., Wasmer, K., Giovanola, J., Breguet, J-M., Michler, J., and Karimi, A.: In-situ scanning electron microscope indentation of gallium arsenide. In 16th European Conference on Fracture (ECF16), Proceedings of the 16th European Conference of Fracture, Alexandroupolis, Greece, July 3-7, 2006, ed. Gdoutos, E.E.. (Springer, New York, NY, 2006).Google Scholar
Rabe, R., Breguet, J-M., Schwaller, P., Stauss, S., Haug, F-J., Patscheider, J., and Michler, J.: Observation of fracture and plastic deformation during indentation and scratching inside the scanning electron microscope. Thin Solid Films 469470, 206 (2004).CrossRefGoogle Scholar
Lawn, B.: Fracture of Brittle Solids, 2nd ed. (Cambridge University Press, Cambridge, UK, 1997).Google Scholar
Rabe, R.: Compact test platform for in-situ nano-indentation and scratching inside a scanning electron microscope. Ph.D. Thesis, Ecole Polytechnique Fédéral de Lausanne (EPFL), 2006.http://infoscience.epfl.ch/record/86070 Library of EPFL.Google Scholar
Lefebvre, A., Androussi, Y., and Vanderschaeve, G.: A TEM investigation of the dislocation rosettes around a Vickers indentation in GaAs. Phys. Status Solidi A 99, 405 (1987).CrossRefGoogle Scholar
Le Bourhis, E., Largeau, L., Patriarche, G., and Riviere, J.P.: Deformations of (011) GaAs under concentrated load. J. Mater. Sci. Lett. 20, 1361 (2001).CrossRefGoogle Scholar
Leipner, H.S., Lorenz, D., Zeckzer, A., Lei, H., and Grau, P.: Nanoindentation pop-in effect in semiconductors. Physica B 308310, 446 (2001).CrossRefGoogle Scholar
Le Bourhis, E. and Patriarche, G.: Plastic deformation of III-V semiconductors under concentrated load. Prog. Cryst. Growth Charact. Mater. 47, 1 (2003).CrossRefGoogle Scholar
Wasmer, K., Parlinska-Wojtan, M., Gassilloud, R., Pouvreau, C., Tharian, J., and Michler, J.: Plastic deformation modes of gallium-arsenide in nanoindentation and nanoscratching. Appl. Phys. Lett. 90, 031902 (2007).CrossRefGoogle Scholar
Parlinska-Wojtan, M., Wasmer, K., Tharian, J., and Michler, J.: Microstructural comparison of material damage in GaAs caused by Berkovich and wedge nanoindentation and nanoscratching. Scr. Mater. 59, 364 (2008).CrossRefGoogle Scholar
Cook, R.F. and Pharr, G.M.: Direct observation and analysis of indentation cracking in glasses and ceramics. J. Am. Ceram. Soc. 73, 787 (1990).CrossRefGoogle Scholar
Wasmer, K., Parlinska-Wojtan, M., Graça, S., and Michler, J.: Sequence of deformation and cracking behaviours of gallium-arsenide during nano-scratching. Mater. Chem. Phys. 138, 38 (2013). http://dx.doi.org/10.1016/j.matchemphys.2012.10.033.CrossRefGoogle Scholar
Fett, T. and Munz, D.: Problems in fracture mechanics of indentations cracks. Forschungszentrum Karlsruhe, Institut für Materialforschung, FZKA 6907, (2003). http://bibliothek.fzk.de/zb/berichte/FZKA6907.pdf.Google Scholar
Fett, T. and Munz, D.: Stress Intensity Factors and Weight Functions, 1st ed. (KIT Press, Karlsruhe Institute of Technology, Karlsruhe, Germany, 1997).Google Scholar
Michot, G. and George, A.: Fracture toughness of pure and in doped GaAs. Scr. Metall. 22, 1043 (1988).CrossRefGoogle Scholar
Yasutake, K., Konishi, Y., Adachi, K., Yoshii, K., Umeno, M., and Kawabe, H.: Fracture of GaAs wafers. Jpn. J. Appl. Phys. 27, 2238 (1988).CrossRefGoogle Scholar
Chen, C.P. and Morrissey, C.J.: Evaluation of GaAs fracture mechanics. Nasa Technol. Brief 11, 1 (1987).Google Scholar
Margevicius, R.W. and Gumbsch, P.: Influence of crack propagation direction on {110} fracture toughness of gallium arsenide. Philos. Mag. A 78, 567 (1998).CrossRefGoogle Scholar