Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T18:59:27.503Z Has data issue: false hasContentIssue false

Nanoimprinted complementary organic electronics: Single transistors and inverters

Published online by Cambridge University Press:  20 September 2011

Thomas Rothländer*
Affiliation:
MATERIALS—Institute for Surface Technologies and Photonics, JOANNEUM RESEARCH, Forschungsgesellschaft mbH, Weiz 8160, Austria
Ursula Palfinger
Affiliation:
MATERIALS—Institute for Surface Technologies and Photonics, JOANNEUM RESEARCH, Forschungsgesellschaft mbH, Weiz 8160, Austria
Barbara Stadlober
Affiliation:
MATERIALS—Institute for Surface Technologies and Photonics, JOANNEUM RESEARCH, Forschungsgesellschaft mbH, Weiz 8160, Austria
Anja Haase
Affiliation:
MATERIALS—Institute for Surface Technologies and Photonics, JOANNEUM RESEARCH, Forschungsgesellschaft mbH, Weiz 8160, Austria
Herbert Gold
Affiliation:
MATERIALS—Institute for Surface Technologies and Photonics, JOANNEUM RESEARCH, Forschungsgesellschaft mbH, Weiz 8160, Austria
Christian Palfinger
Affiliation:
MATERIALS—Institute for Surface Technologies and Photonics, JOANNEUM RESEARCH, Forschungsgesellschaft mbH, Weiz 8160, Austria
Johanna Kraxner
Affiliation:
MATERIALS—Institute for Surface Technologies and Photonics, JOANNEUM RESEARCH, Forschungsgesellschaft mbH, Weiz 8160, Austria
Georg Jakopic
Affiliation:
MATERIALS—Institute for Surface Technologies and Photonics, JOANNEUM RESEARCH, Forschungsgesellschaft mbH, Weiz 8160, Austria
Paul Hartmann
Affiliation:
MATERIALS—Institute for Surface Technologies and Photonics, JOANNEUM RESEARCH, Forschungsgesellschaft mbH, Weiz 8160, Austria
Gerhard Domann
Affiliation:
MATERIALS—Institute for Surface Technologies and Photonics, JOANNEUM RESEARCH, Forschungsgesellschaft mbH, Weiz 8160, Austria
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We demonstrate the fabrication of shadow mask (SM) patterned as well as nanoimprint lithography (NIL) patterned organic transistors and integrated complementary organic inverters (ICOIs). As active layers pentacene (p-type) and either PTCDI-C13H27 or F16CuPc (n-type) were used. The SM-patterned ICOIs with a staggered bottom gate configuration, a nanocomposite dielectric and both active layer combinations (pentacene/PTCDI C13H27, pentacene/F16CuPc) exhibited high performance (3 V operation voltage; gain around 60; high level 3 V; low level 5 mV; noise margin 0.9 V). Flexible ICOIs with transistor channel lengths of 900 nm were successfully fabricated by NIL, using a benzocyclobutene derivative as dielectric. Because of the process inherent coplanar bottom gate configuration, F16CuPc was used. The ICOIs showed proper functionality (3 V operation voltage; gain around 5; high level 2.9 V; low level 25 mV). To our knowledge, this study demonstrates the first complementary submicron inverters based on fully R2R compatible imprint processes.

Type
Invited Feature Papers
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Loo, Y.L. and McCulloch, I.: Progress and challenges in commercialization of organic electronics. MRS Bull. 33(7), 653 (2008).CrossRefGoogle Scholar
2.Myny, K., Steudel, S., Smout, S., Vicca, P., Furthner, F., van der Putten, B., Tripathi, A.K., Gelinck, G.H., Genoe, J., Dehaene, W., and Heremans, P.: Organic RFID transponder chip with data rate compatible with electronic product coding. Org. Electron. 11, 1176 (2010).CrossRefGoogle Scholar
3.Jung, M., Kim, J., Noh, J., Lim, N., Lim, C., Lee, G., Kim, J., Kang, H., Jung, K., Leonard, A.D., Tour, J.M., and Cho, G.: All printed and roll-to-roll printable 13.56 MHz operated 1-bit RF tag on plastic foils. IEEE Trans. Electron Devices 57, 3 (2010).CrossRefGoogle Scholar
4.Sekitani, T., Takamiya, M., Noguchi, Y., Nakano, S., Kato, Y., Sakurai, T., and Someya, T.: A large-area wireless power-transmission sheet using printed organic transistors and plastic MEMS switches. Nat. Mater. 6, 413 (2007).CrossRefGoogle ScholarPubMed
5.Klauk, H., Halik, M., Zschieschang, U., Eder, F., Rohde, D., Schmid, G., and Dehm, C.: Flexible organic complementary circuits. IEEE Trans. Electron. Devices 52, 618 (2005).CrossRefGoogle Scholar
6.Gundlach, D.J., Pernstich, K.P., Wilckens, G., Gruter, M., Haas, S., and Batlogg, B.: High mobility n-channel organic thin-film transistors and complementary inverters. J. Appl. Phys. 98, 064502 (2005).CrossRefGoogle Scholar
7.Klauk, H., Gundlach, D.J., and Jackson, T.N.: Fast organic thin-film transistor circuits. IEEE Electron Device Lett. 20, 289 (1999).CrossRefGoogle Scholar
8.Haas, U., Gold, H., Haase, A., Jakopic, G., and Stadlober, B.: Submicron pentacene-based organic thin-film transistors on flexible substrates. Appl. Phys. Lett. 91, 043511 (2007).CrossRefGoogle Scholar
9.Auner, C., Palfinger, U., Gold, H., Kraxner, J., Haase, A., Haber, T., Sezen, M., Grogger, W., Jakopic, G., Krenn, J. R., Leising, G., Stadlober, B.: High-performing submicron organic thin-film transistors fabricated by residue-free embossing. Org. Electron. 11, 552 (2010).CrossRefGoogle Scholar
10.Auner, C., Palfinger, U., Gold, H., Kraxner, J., Haase, A., Haber, T., Sezen, M., Grogger, W., Jakopic, G., Krenn, J.R., Leising, G., and Stadlober, B.: Residue-free room temperature UV-nanoimprinting of submicron organic thin film transistors. Org. Electron. 10, 1466 (2009).CrossRefGoogle Scholar
11.Vusser, S.D., Steudel, S., Myny, K., Genoe, J., and Heremans, P.: Low voltage complementary organic inverters. Appl. Phys. Lett. 88, 162116 (2006).CrossRefGoogle Scholar
12.Bao, Z., Lovinger, A.J., and Brown, J.: New air-stable n-channel organic thin film transistors. J. Am. Chem. Soc. 120, 207 (1998).CrossRefGoogle Scholar
13.Shen, C. and Kahn, A.: Electronic structure, diffusion and p-doping at the Au/F16CuPc interface. J. Appl. Phys. 90, 4549 (2001).CrossRefGoogle Scholar
14.Crone, B., Dodapalapur, A., Lin, Y-Y., Filas, R.W., Bao, Z., LaDuca, A., Sarpeshkar, R., and Katz, H.E.: Large-scale complementary integrated circuits based on organic transistors. Nature 403, 521 (2000).CrossRefGoogle ScholarPubMed
15.Klauk, H., Zschieschang, U., Pflaum, J., and Halik, M.: Ultralow-power organic complementary circuits. Nature 445, 745 (2007).CrossRefGoogle ScholarPubMed
16.Tatemichi, S., Ichikawa, M., Kato, S., Koyama, T., and Taniguchi, Y.: Low-voltage, high-gain, and high-mobility organic complementary inverters based on N, N’-Ditridecyl-3,4,9,10-Perylenetetracarboxylic diimide and pentacene. Phys. Status Solidi. 2, 47 (2008).Google Scholar
17.Zirkl, M., Haase, A., Fian, A., Schön, H., Sommer, C., Jakopic, G., Leising, G., Stadlober, B., Graz, I., Gaar, N., Schwödiauer, R., Bauer-Gogonea, S., and Bauer, S.: Low-voltage organic thin-film transistors with high-k nanocomposite gate dielectrics for flexible electronics and optothermal sensors. Adv. Mater. 19, 2241 (2007).CrossRefGoogle Scholar
18.Chua, L-L., Ho, P.K.H., Sirringhaus, H., and Friend, R.H.: High-stability ultrathin spin-on benzocyclobutene gate dielectric for polymer field-effect transistors. Appl. Phys. Lett. 84(17), 3400 (2003).CrossRefGoogle Scholar
19.Haas, U., Haase, A., Satzinger, V., Pichler, H., Leising, G., Jakopic, G., Stadlober, B., Houbertz, R., Domann, G., and Schmitt, A.: Hybrid polymers as tunable and directly-patternable gate dielectrics in organic thin-film transistors. Phys. Rev. B 73, 235339 (2006).CrossRefGoogle Scholar
20.Kraxner, J., Palfinger, U., Stadlober, B., Auner, C., Haase, A., Gold, H., Belegratis, M., Jakopic, G., Krenn, J.R., and Domann, G.: Ultra-thin hybrid dielectrics in sub μm NIL OTFTs. In Proceedings of the Seventh Organic Semiconductor Conference (London, United Kingdom, 2009).Google Scholar
21.Palfinger, U., Auner, C., Gold, H., Haase, A., Kraxner, J., Haber, T., Sezen, M., Grogger, W., Domann, G., Jakopic, G., Krenn, J.R., and Stadlober, B.: Fabrication of n- and p-type organic thin film transistors with minimized gate overlaps by self-aligned nanoimprinting. Adv. Mater. 22, 5115 (2010).CrossRefGoogle Scholar
22.Fian, A., Haase, A., Stadlober, B., Jakopic, G., Matsko, N.B., Grogger, W., and Leising, G.: AFM, ellipsometry, XPS and TEM on ultra-thin oxide/polymer nanocomposite layers in organic thin film transistors. Anal. Bioanal. Chem. 390(6), 1455 (2008).CrossRefGoogle ScholarPubMed
23.Jang, J., Kim, S.H., Nam, S., Chung, D.S., Yang, C., Yun, W.M., Park, C.E., and Koo, J.B.: Hysteresis-free organic field-effect transistors and inverters using photocrosslinkable poly(vinyl cinnamate) as a gate dielectric. Appl. Phys. Lett. 92(14), 143306 (2008).CrossRefGoogle Scholar
24.Rabaey, J., Chandrakasan, A., and Nikolic, B.: Digital Integrated Circuits–—A design perspective, 2nd ed. (Prentice Hall Electronics and VLSI Series, Pearson Education Inc., London, 2003).Google Scholar
25.Hong, K., Kim, S.H., Yang, C., An, T.K., Cha, H., Park, C., and Park, C.E.: Photopatternable, highly conductive and low work function polymer electrodes for high-performance n-type bottom contact organic transistors. Org. Electron. 12, 516 (2011).CrossRefGoogle Scholar
26.Hong, K., Kim, S.H., Yang, C., Jang, J., Cha, H., and Park, C.E.: Improved n-type bottom-contact organic transistors by introducing a poly (3,4-ethylenedioxythiophene):poly(4-styrene sulfonate) coating on the source/drain electrodes. APL. 97, 103304 (2010).Google Scholar