Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T01:39:34.040Z Has data issue: false hasContentIssue false

Nanocrystalline SnO2 Particles and Twofold-coordinated Sn Defect Centers in Sol-gel-derived SnO2–SiO2 Glasses

Published online by Cambridge University Press:  31 January 2011

Tomokatsu Hayakawa
Affiliation:
Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Aichi 466–8555, Japan
Takehiro Enomoto
Affiliation:
Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Aichi 466–8555, Japan
Masayuki Nogami
Affiliation:
Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Aichi 466–8555, Japan
Get access

Abstract

Semiconductive nanocrystals of stannic oxide (SnO2) were precipitated in silica (SiO2) glasses synthesized via a sol-gel route. Kayanuma's equation, which describes the quantum confinement of an electron–hole pair in a semiconductive particle, well explained the absorption-edge shift due to the SnO2 nanocrystals in the optical absorption spectra. The adequate anneal of the SnO2–SiO2 glass ceramics in H2 gas led to the decomposition of the SnO2 nanocrystals and concurrently the production of twofold-coordinated tin atoms (Sn20 ) that provided a violet photoluminescence. The thermal behavior was studied with the x-ray diffraction measurement and photoluminescence and photoluminescence excitation spectroscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Sakurai, Y., J. Non-Cryst. Solids 271, 218 (2000).CrossRefGoogle Scholar
2.Glinka, Y.D., Lin, S-H., and Chen, Y-T., Appl. Phys. Lett. 75, 778 (1999).CrossRefGoogle Scholar
3.Hosono, H., Mizuguchi, M., Kawazoe, H., and Ogawa, T., Appl. Phys. Lett. 74, 2755 (1999); L. Skuja, M. Mizuguchi, H. Hosono, and H. Kawazoe, Nucl. Instrum. Methods Phys. Res. B 166–167 , 711 (2000).CrossRefGoogle Scholar
4.Rebohle, L., Borany, J. von, Skorupa, W., Fro¨b, H., and Niedermeier, S., Appl. Phys. Lett. 77, 969 (2000).CrossRefGoogle Scholar
5.Warren, B.E., X-ray Diffraction (Dover Publications, New York, 1969).Google Scholar
6.Maschio, R. Dai, Dirè, S., Carturan, G., Enzo, S., and Battezzati, L., J. Mater. Res. 7, 435 (1992).CrossRefGoogle Scholar
7.Robertson, J., J. Phys. C: Solid State Phys. 12, 4767 (1979).CrossRefGoogle Scholar
8.Kayanuma, Y., Solid State Commun. 59, 405 (1986); Phys. Rev. B 38, 9797 (1988).CrossRefGoogle Scholar
9.Hayashi, M., Iwano, T., Nasu, H., Kamiya, K., Sugimoto, N., and Hirao, K., J. Mater. Res. 12, 2552 (1997); B. Yu, C. Zhu, and F. Gan, Opt. Mater. 7, 15 (1997).CrossRefGoogle Scholar
10.Nagasawa, M. and Shionoya, S., J. Phys. Soc. Jpn. 30, 158 (1971).CrossRefGoogle Scholar
11.Yu, P.Y. and Cardona, M., Fundamentals of Semiconductors (Springer-Verlag, Berlin, Heidelberg, 1996).CrossRefGoogle Scholar
12.Murcia, M. De, Egee, M., and Fillard, J.P., J. Phys. Chem. Solids 39, 629 (1978).CrossRefGoogle Scholar
13.Matsuoka, T., Kasahara, Y., Tsuchiya, M., Nitta, T., and Hayakawa, S., J. Electrochem. Soc. 125, 102 (1978).CrossRefGoogle Scholar
14.Jones, C.E. and Embee, E., J. Appl. Phys. 47, 5365 (1976).CrossRefGoogle Scholar
15.Green, W.H., Le, K.P., Grey, J., Au, T.T., and Sailor, M.J., Science 276, 1826 (1997).CrossRefGoogle Scholar
16.Skuja, L., J. Non-Cryst. Solids 149, 77 (1992).CrossRefGoogle Scholar
17.Chiodini, N., Meinardi, M., Morazzoni, F., Paleari, A., Scotti, R., and Martino, D. Di, J. Non-Cryst. Solids 261, 1 (2000).CrossRefGoogle Scholar
18.Yuen, M.J., Appl. Opt. 21, 136 (1982).CrossRefGoogle Scholar
19.Skuja, L.N., Trukhin, A.N., and Plaudis, A.E., Phys. Status Solidi A 84, K153 (1984); L.K. Skuja, Phys. Status Solidi A 114, 731 (1989).CrossRefGoogle Scholar
20.Stella, A., Nisoli, M., Silvestri, S. De, Svelto, O., Lanzani, G., Cheyssac, P., and Kofman, R., Phys. Rev. B 53, 15497 (1996).CrossRefGoogle Scholar
21.Wrighton, M.S., Ginley, D.S., and Morse, D.L., J. Phys. Chem. 78, 2229 (1974).CrossRefGoogle Scholar
22.Gaskell, D.R., Introduction to Metallurgical Thermodynamics (McGraw-Hill Kogakusha, Ltd., 1973).Google Scholar
23.Hayakawa, T. and Nogami, M., J. Appl. Phys. 90, 2200 (2001).CrossRefGoogle Scholar
24.Pacchioni, G. and Ferrario, R., Phys. Rev. B 58, 6090 (1998).CrossRefGoogle Scholar
25.Zhang, B.L. and Raghavachari, K., Phys. Rev. B 55, R15993 (1997).CrossRefGoogle Scholar
26.Dianov, E.M., Sokolov, V.O., and Sulimov, V.B., J. Non-Cryst. Solids 149, 5 (1992).CrossRefGoogle Scholar
27.Sulimov, V.B., Sokolov, V.O., and Poumellec, B., Phys. Status Solidi B 196, 175 (1996).CrossRefGoogle Scholar
28.McGlynn, S.P., Azumi, T., and Kinoshita, M., Molecular Spectros copy of the Triplet State (Prentice Hall, Englewood Cliffs, NJ, 1969).Google Scholar