Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T22:32:39.910Z Has data issue: false hasContentIssue false

Nanocrystalline grain structures developed in commercial purity Cu by low-temperature cold rolling

Published online by Cambridge University Press:  31 January 2011

Y. M. Wang
Affiliation:
Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
M. W. Chen
Affiliation:
Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
H. W. Sheng
Affiliation:
Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
E. Ma*
Affiliation:
Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
*
b)Address all correspondence to this author.[email protected]
Get access

Abstract

Nanocrystalline pure copper was obtained by cold rolling a commercial bulk Cu to very large extensions at subambient temperatures. The eventual formation of nanocrystalline grain structures is attributed to dynamic grain refinement (recrystallization) mechanisms activated by the low-temperature continuous plastic deformation that leads to ultrahigh densities of dislocations.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ovid'ko, I.A., Science 295, 2386 (2002).Google Scholar
2.Murayama, M., Howe, J.M., Hidaka, H., and Takaki, S., Science 295, 2433 (2002).Google Scholar
3.Valiev, R.Z., Islamgaliev, R.K., and Alexandrov, I.V., Prog. Mater. Sci. 45, 103 (2000).CrossRefGoogle Scholar
4.Jiang, H., Zhu, Y.T., Butt, D.P., Alexandrov, I.V., and Lowe, T.C., Mater. Sci. Eng. A 290, 128 (2000).Google Scholar
5.Sanders, P.G., Eastman, J.A., and Weertman, J.R., Acta Mater. 45, 4019 (1997).Google Scholar
6.Hughes, D.A. and Hansen, N., Phys. Rev. Lett. 87, 135503 (2001).Google Scholar
7.Komura, S., Horita, Z., Nemoto, M., and Langdon, T.G., J. Mater. Res. 14, 4044 (1999).Google Scholar
8.Eckert, J., Holzer, J.C., Krill, C.E. III, and Johnson, W.L., J. Mater. Res. 7, 1751 (1992).Google Scholar
9.Huang, J.Y., Wu, Y.K., and Ye, H.Q., Acta Mater. 44, 1211 (1996).Google Scholar
10.Koch, C.C., Nanostructured Mater. 9, 13 (1997).CrossRefGoogle Scholar
11.Wu, X., Tao, N., Hong, Y., Xu, B., Lu, J., and Lu, K., Acta Mater. 50, 2075 (2002).Google Scholar
12.Xu, J., Herr, U., Klassen, T., and Averback, R.S., J. Appl. Phys. 79, 3935 (1996).Google Scholar
13.Xu, J., He, J.H., and Ma, E., Metall. Mater. Trans. A 28, 1569 (1997).CrossRefGoogle Scholar
14.Reed-Hill, R.E. and Abbaschian, R., Physical Metallurgy Principles, 3rd ed. (PWS Publishing, Boston, MA, 1994), Chap. 8, p. 227.Google Scholar
15.Lu, L., Sui, M.L., and Lu, K., Science 287, 1463 (2000).Google Scholar
16.Wang, Y.M., Ma, E., and Chen, M.W., Appl. Phys. Lett. 80, 2395 (2002).Google Scholar
17.Hughes, D.A. and Hansen, N., Acta Mater. 45, 3871 (1997).Google Scholar
18.Zhang, X., Wang, H., Narayan, J., and Koch, C.C., Acta Mater. 49, 1319 (2001).Google Scholar
19.Doherty, R.D., Hughes, D.A., Humphreys, F.J., Jonas, J.J., Jensen, D. Juul, Klassner, M.E., King, W.E., McNelley, T.R., Mc-Queen, H.J., and Rollett, A.D., Mater. Sci. Eng. A 238, 219 (1997).Google Scholar
20.Andrade, U., Meyers, M.A., Vecchio, K.S., and Chokshi, A.H., Acta Metall. Mater. 42, 3183 (1994).Google Scholar
21.Fecht, H.J., Nanostruct. Mater. 6, 33 (1995).CrossRefGoogle Scholar
22.Wang, Y.M. and Ma, E., Mater. Sci. Eng. A (in press).Google Scholar
23.Wang, Y.M., Chen, M., Zhou, F., and Ma, E., Nature (London), (in press).Google Scholar
24.Valiev, R.Z., Alexandrov, I.V., Zhu, Y.T., and Lowe, T.C., J. Mater. Res. 17, 5 (2002).Google Scholar
25.Ma, E., Atzmon, M., and Pinkerton, F.E., J. Appl. Phys. 74, 955 (1993).Google Scholar
26.Najafabadi, R., Srolovitz, D., Ma, E., and Atzmon, M., J. Appl. Phys. 74, 3144 (1993).Google Scholar
27.Huang, J.Y., Zhu, Y.T., Jiang, H., and Lowe, T.C., Acta Mater. 49, 1497 (2001).Google Scholar