Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T12:47:45.714Z Has data issue: false hasContentIssue false

Nano body-centered cubic CoFe2 alloy precursor for cobalt ferrite via sonoreduction process

Published online by Cambridge University Press:  31 January 2011

Maya Mohan
Affiliation:
Materials’ Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208 016, India
Vimlesh Chandra
Affiliation:
Materials’ Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208 016, India
S. Sundar Manoharan*
Affiliation:
Materials’ Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208 016, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A stable nano body-centered cubic (bcc) CoFe2 alloy was isolated by employing a combination of N2H4.H2O reduction and sonochemical route under basic conditions. This alloy has proved to be a potential precursor for CoFe2O4 production. X-ray diffraction and transmission electron microscopy confirms the formation of a bcc phase CoFe2 alloy with particle size <10 nm and spherical morphology. Thermogravimetric analysis confirmed the oxidation of the alloy composition showing a weight gain between 200 and 500 °C, which corresponds to fully oxidized CoFe2O4. A significant increase in the saturation magnetization (Ms = 230 emu/g) for the nano CoFe2 alloy was observed in comparison with that of the theoretical bulk value (200 emu/g) at 300 K.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Patil, K.C., Manoharan, S.S.Gajapathy, D.: Preparation of High Density Ferrites edited by N.P. Cheremisinoff Marcel Dekker New York 1989 Vol. 1, 469–493Google Scholar
2Berry, C.C.Curtis, A.S.G.: Fictionalization of magnetic nanoparticles for application in biomedicine. J. Phys. D: Appl. Phys. 36, R198 2003CrossRefGoogle Scholar
3Moser, A., Takano, K., Margulies, D.T., Albrecht, M., Sonobe, Y., Ikeda, Y., Sun, S.Fullerton, E.E.: Magnetic recording: Advancing into the future. J. Phys. D: Appl. Phys. 35, R157 2002CrossRefGoogle Scholar
4Luders, U., Barthelemy, A., Bibes, M., Bouzehouane, K., Fusil, S., Jacquet, E., Contour, J-P., Bobo, J-F., Fontcuberta, J.Fert, A.: NiFe2O4: A versatile spinel material brings new opportunities for spintronics. Adv. Mater. 18, 1733 2006CrossRefGoogle Scholar
5Pankhurst, Q.A., Connolly, J., Jones, S.K.Dobson, J.: Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 36, R167 2003CrossRefGoogle Scholar
6Wang, Z.L., Liu, Y.Zhang, Z.: Handbook of Nanophase and Nanostructured Materials Kluwer Academic/Plenum Publishers New York 2002 Vol. 3CrossRefGoogle Scholar
7Weller, D., Moser, A., Folks, L., Best, M.E., Lee, W., Toney, M.F., Schwickert, M., Thiele, J.U.Doerner, M.F.: High Ku materials approach to 100 Gbits/in2. IEEE Trans. Magn. 36, 10 2000CrossRefGoogle Scholar
8Virat, N., Hassan, R.S., Meny, C., Panissod, P., Bouillet, C.U., Loison, J.L., Versini, G., Huber, F.Pourroy, G.: Diversity of the magnetic coupling behaviors in the CoFe2/CoFe2O4 system. Appl. Phys. Lett. 86, 192514 2005Google Scholar
9Jurca, I.S., Meny, C., Viart, N., Bouillet, C.U., Panissod, P.Pourroy, G.: Growth, structure and morphology of CoFe2/CoFe2O4 multilayers. Thin Solid Films 444, 58 2003CrossRefGoogle Scholar
10Farrow, R.F.C., Carey, M.J., Marks, R.F., Rice, P.M.Smith, D.J.: Enhanced blocking temperature in NiO spin valves: Role of cubic spinel ferrite layer between pinned layer and NiO. Appl. Phys. Lett. 77, 1191 2000CrossRefGoogle Scholar
11Shafi, K.V.P.M.Gedanken, A.: Sonochemical preparation and size-dependent properties of nanostructured CoFe2O4 particles. Chem. Mater. 10, 3445 1998CrossRefGoogle Scholar
12Baranchikov, A.Ye., Ivanov, V.K.Tretyakov, Y.D.: Kinetics and mechanism of nickel ferrite formation under high temperature ultrasonic treatment. Ultrason. Sonochem. 14, 131 2007CrossRefGoogle ScholarPubMed
13Kulkarni, R.G.Joshi, H.H.: Comparison of magnetic properties of MgFe2O4 prepared by wet-chemical and ceramic methods. J. Solid State Chem. 64, 141 1986CrossRefGoogle Scholar
14Rashad, M.M.Fouad, O.A.: Synthesis and characterization of nano-sized nickel ferrites from fly ash for catalytic oxidation of CO. Mater. Chem. Phys. 94, 365 2005CrossRefGoogle Scholar
15Liu, C., Rondinone, A.J.Zhang, Z.J.: Synthesis of magnetic spinel ferrite CoFe2O4 nanoparticles from ferric salt and characterization of the size-dependent superparamagnetic properties. Pure Appl. Chem. 72, 37 2000CrossRefGoogle Scholar
16Ding, J., Reynolds, T., Miao, W.F., McCormick, P.G.Street, R.: High magnetic performance in mechanically alloyed Co-substituted Fe3O4. Appl. Phys. Lett. 65, 3135 1994CrossRefGoogle Scholar
17Chinnasamy, C.N., Narayanasamy, A., Ponpandian, N., Chattopadhyay, K., Shinoda, K., Jeyadevan, B., Tohji, K., Nakatsuka, K., Furubayashi, T.Nakatani, I.: Mixed spinel structure in nanocrystalline NiFe2O4. Phys. Rev. B 63, 184108 2001CrossRefGoogle Scholar
18Sepelak, V., Bergmann, I., Feldhoff, A., Heitjans, P., Krumeich, F., Menzel, D., Litterst, F.J., Campbell, S.J.Becker, K.D.: Nanocrystalline nickel ferrite, NiFe2O4: Mechanosynthesis, nonequilibrium cation distribution, canted spin arrangement, and magnetic behavior. J. Phys. Chem. C 111, 5026 2007CrossRefGoogle Scholar
19Kale, A., Gubbala, S.Misra, R.D.K.: Magnetic behavior of nanocrystalline nickel ferrite synthesized by the reverse micelle technique. J. Magn. Magn. Mater. 277, 350 2004CrossRefGoogle Scholar
20Fang, J., Shama, N., Tung, L.D., Shin, E.Y., O’Connor, C.J., Stokes, K.L., Caruntu, G., Wiley, J.B., Spinu, L.Tang, J.: Ultrafine NiFe2O4 powder fabricated from reverse microemulsion process. J. Appl. Phys. 93, 7483 2003CrossRefGoogle Scholar
21Liu, J., Li, F., Evans, D.G.Duan, X.: Stoichiometric synthesis of a pure ferrite from a tailored layered double hydroxide (hydrotalcite-like) precursor. Chem. Commun. 542 2003CrossRefGoogle ScholarPubMed
22Mooney, K.E., Nelson, J.A.Wagner, M.J.: Superparamagnetic cobalt ferrite nanocrystals synthesized by alkalide reduction. Chem. Mater. 16, 3155 2004CrossRefGoogle Scholar
23Doh, S.G., Kim, E.B., Lee, B.H.Oh, J.H.: Characteristics and synthesis of Cu–Ni ferrite nanopowders by coprecipitation method with ultrasound irradiation. J. Magn. Magn. Mater. 272, 2238 2004CrossRefGoogle Scholar
24Chen, J.P.Lim, L.L.: Key factors in chemical reduction by hydrazine for recovery of precious metals. Chemosphere 49, 363 2002CrossRefGoogle ScholarPubMed
25Millange, F., Walton, R.I.O’Hare, D.: Time-resolved in situ x-ray diffraction study of the liquid-phase reconstruction of Mg–Al–carbonate hydrotalcite-like compounds. J. Mater. Chem. 10, 1713 2000CrossRefGoogle Scholar