Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-03T04:59:29.652Z Has data issue: false hasContentIssue false

Multicolor luminescence in oxygen-deficient Tb3+-doped calcium aluminogermanate glasses

Published online by Cambridge University Press:  31 January 2011

Geng Lin
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
Bin Zhu
Affiliation:
State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People’s Republic of China
Shifeng Zhou
Affiliation:
State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People’s Republic of China
Hucheng Yang
Affiliation:
State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People’s Republic of China
Jianrong Qiu*
Affiliation:
State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected] Present address: State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People’s Republic of China
Get access

Abstract

In this paper, we report on the multicolor luminescence in oxygen-deficient Tb3+-doped calcium aluminogermanate glasses. A simple method was proposed to control oxygen-deficient defects in glasses by adding metal Al instead of the corresponding oxide (Al2O3), resulting in efficient blue and red emissions from Tb3+-undoped glasses with 300 and 380 nm excitation wavelengths, respectively. Moreover, in Tb3+-doped oxygen-deficient glasses, bright three-color (sky-blue, green or yellow, and red) luminescence was observed with 300, 380, and 395 nm excitation wavelengths, respectively. These glasses are useful for the fabrication of white light-emitting diode (LED) lighting.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Szuromi, P.Clery, D.: Control and use of defects in materials. Science 281, 939 1998Google Scholar
2Hill, K.O., Fujii, Y., Johnson, D.C.Kawasaki, B.S.: Bargg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett. 32, 647 1978CrossRefGoogle Scholar
3Amemiya, Y.Miyahara, J.: Imaging plate illuminates many fields. Nature (London) 336, 89 1988CrossRefGoogle ScholarPubMed
4Takahashi, K., Miyahara, J.Shibahara, Y.: Photostimulated luminescence (PSL) and color centers in BaFX: Eu2+ (X = Cl, Br, I) phosphors. J. Electrochem. Soc. 132, 1492 1985CrossRefGoogle Scholar
5Qiu, J., Shimizugawa, Y., Iwabuchi, Y.Hirao, K.: Photostimulated luminescence of Ce3+ doped alkali borate glasses. Appl. Phys. Lett. 71, 43 1997CrossRefGoogle Scholar
6Qiu, J., Miura, K., Inouye, H., Kondo, Y., Mitsuyu, T.Hirao, K.: Femtosecond laser-induced three-dimensional bright and long-lasting phosphorescence inside calcium aluminosilicate glasses doped with rare earth ions. Appl. Phys. Lett. 73, 1763 1998CrossRefGoogle Scholar
7Hosono, H., Abe, Y., Kinser, D.L., Weeks, R.A., Muta, K.Kawazoe, H.: Nature and origin of the 5-eV band in SiO2:GeO2 glasses. Phys. Rev. B: Condens. Matter 46, 11445 1992CrossRefGoogle ScholarPubMed
8Zyubin, A.S., Mebel, A.M.Lin, S.H.: Photoluminescence of oxygen-containing surface defects in germanium oxides: A theoretical study. J. Chem. Phys. 123, 044701 2005CrossRefGoogle ScholarPubMed
9Fujimaki, M., Watanabe, T., Katoh, T., Kasahara, T., Miyazaki, N., Ohki, Y.Nishikawa, H.: Structures and generation mechanisms of paramagnetic centers and absorption bands responsible for Ge-doped SiO2 optical-fiber gratings. Phys. Rev. B: Condens. Matter 57, 3920 1998CrossRefGoogle Scholar
10Qiu, J., Jiang, X., Zhu, C., Shirai, M., Si, J., Jiang, N.Hirao, K.: Manipulation of gold nanoparticles inside transparent materials. Angew. Chem. Int. Ed. 43, 2234 2004CrossRefGoogle ScholarPubMed
11Hwa, L., Shiau, J.Szu, S.: Polarized Raman scattering in lanthanum gallogermanate glasses. J. Non-Cryst. Solids 249, 55 1999CrossRefGoogle Scholar
12Pan, Z.Morgan, S.H.: Raman spectra and thermal analysis of a new lead-tellurium-germanate glass system. J. Non-Cryst. Solids 210, 130 1997CrossRefGoogle Scholar
13Lin, G., Zhu, B., Zhou, S., Yang, H.Qiu, J.: Tunable luminescence of CaO–Al2O3–GeO2 glasses. Opt. Express 15, 16980 2007CrossRefGoogle ScholarPubMed
14Fujimaki, M., Kasahara, T., Shimoto, S., Miyazaki, N., Tokuhiro, S., Seol, K.S.Ohki, Y.: Structural changes induced by KrF excimer laser photons in H2-loaded Ge-doped SiO2 glass. Phys. Rev. B: Condens. Matter 60, 4682 1999CrossRefGoogle Scholar
15Poulios, D.P., Spoonhower, J.P.Bigelow, N.P.: Influence of oxygen deficiencies and hydrogen-loading on defect luminescence in irradiated Ge-doped silica glasses. J. Lumin. 101, 23 2003CrossRefGoogle Scholar
16Awazu, K., Muta, K.Kawazoe, H.: Formation mechanism of hydrogen-associated defect with an 11.9 mT doublet in electron spins resonance and red luminescence in 9SiO2:GeO2 fibers. J. Appl. Phys. 75, 2237 1993CrossRefGoogle Scholar
17Kohketsu, M., Awazu, K., Kawazoe, H.Yamane, M.: Photoluminescence in VAD SiO2:GeO2 glasses sintered under reducing or oxidizing conditions. Jpn. J. Appl. Phys. 28, 622 1989CrossRefGoogle Scholar
19Dieke, G.H.: Spectra and Energy Levels of Rare Earth Ions in Crystals Interscience New York 1968Google Scholar