Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T17:31:04.107Z Has data issue: false hasContentIssue false

Mullite formation from nonstoichiometric slow hydrolyzed single phase gels

Published online by Cambridge University Press:  03 March 2011

Yong Wang
Affiliation:
Department of Chemical Engineering, Washington State University, Pullman, Washington 99164-2710
William J. Thomson
Affiliation:
Department of Chemical Engineering, Washington State University, Pullman, Washington 99164-2710
Get access

Abstract

A comparative dynamic x-ray diffraction (DXRD) and differential thermal analysis (DTA) study was performed in the investigation of mullite and spinel formation from slowly hydrolyzed single phase gels with Al/Si ratios ranging from 1/1 to 14/1. Both metastable tetragonal mullite and spinel were observed to form at temperatures <1000 °C in the gels with Al/Si ratios <8/1 and mullite transformed to the orthorhombic structure at ∼1250 °C. However, at higher Al/Si ratios, spinel was the only crystalline phase detected at <1000 °C and orthorhombic mullite formed directly at temperatures >1250 °C. As the Al/Si ratio increases, both the tetragonal mullite and spinel formation temperatures decrease while the orthorhombic mullite formation temperature increases. Based on the Al/Si composition where the formation extents of tetragonal mullite and spinel were maximum, their compositions are estimated to be 2Al2O3 · SiO2 and 6A12O3 · SiO2, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hoffman, D. W., Roy, R., and Komarneni, S., J. Am. Ceram. Soc. 67 (7), 468471 (1984).CrossRefGoogle Scholar
2Komarneni, S., Suwa, Y., and Roy, R., J. Am. Ceram. Soc. 69 (7), C155C156 (1986).Google Scholar
3Okada, K. and Otsuka, N., J. Am. Ceram. Soc. 69 (9), 652656 (1986).CrossRefGoogle Scholar
4Huling, J. C. and Messing, G. L., J. Am. Ceram. Soc. 72 (9), 17251729 (1989).CrossRefGoogle Scholar
5Yoldas, B. E. and Partlow, D. P., J. Mater. Sci. 23 (5), 18951900 (1988).CrossRefGoogle Scholar
6Li, D. X. and Thomson, W. J., J. Am. Ceram. Soc. 74 (10), 23822387 (1991).Google Scholar
7Li, D. X. and Thomson, W. J., J. Mater. Res. 6, 819824 (1991).CrossRefGoogle Scholar
8Thomson, W. J., in Ceramic Transactions, Vol. 5, Advanced Characterization Techniques for Ceramics, edited by Young, W. S., McVay, G. L., and Pike, G. E. (American Ceramic Society, Westerville, OH, 1989), pp. 131140.Google Scholar
9Li, D. X. and Thomson, W. J., J. Am. Ceram. Soc. 73 (4), 964969 (1990).CrossRefGoogle Scholar
10Ossaka, J., Nature (London) 191 (4792), 10001001 (1961).CrossRefGoogle Scholar
11Cameron, W. E., Am. Mineral. 62, 747755 (1977).Google Scholar
12Aksay, LA. and Pask, J. A., J. Am. Ceram. Soc. 58 (11–12), 507512 (1975).CrossRefGoogle Scholar
13Pach, L., Roy, R., and Komarneni, S., J. Mater. Res. 5, 278285 (1990).CrossRefGoogle Scholar
14Her, R. K., J. Am. Ceram. Soc. 47 (7), 339341 (1964).Google Scholar
15Schneider, H. and Rymon-Lipinski, T., J. Am. Ceram. Soc. 71 (3), C162C164 (1988).Google Scholar
16Okada, K. and Otsuka, N., J. Am. Ceram. Soc. 70 (1), C245-C247 (1987).Google Scholar
17Okada, K., Otsuka, N., and Ossaka, J., J. Am. Ceram. Soc. 69 (10), C251C253 (1986).Google Scholar
18Sonupalak, B., Sarikaya, M., and Aksay, LA., J. Am. Ceram. Soc. 70 (11), 837842 (1987).CrossRefGoogle Scholar
19Colomban, P. and Mazerolles, L., J. Mater. Sci. 26, 35033510 (1991).CrossRefGoogle Scholar
20Low, I. M. and McPherson, R., J. Mater. Sci. Lett. 7, 11961198 (1988).CrossRefGoogle Scholar
21Chakravorty, A. K., J. Am. Ceram. Soc. 62 (3–4), 120125 (1979).CrossRefGoogle Scholar
22Huling, J. C. and Messing, G. L., J. Am. Ceram. Soc. 74 (10), 23742381 (1991).CrossRefGoogle Scholar