Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T17:57:43.277Z Has data issue: false hasContentIssue false

The most powerful tool for the structural analysis of tungsten suboxide nanowires: Raman spectroscopy

Published online by Cambridge University Press:  31 January 2011

Dong Yu Lu
Affiliation:
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Materials and Technologies, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, People’s Republic of China
Jian Chen*
Affiliation:
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Materials and Technologies, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, People’s Republic of China; and Instrumentation Analysis and Research Center, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, People’s Republic of China
Shao Zhi Deng
Affiliation:
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Materials and Technologies, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, People’s Republic of China
Ning Sheng Xu*
Affiliation:
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Materials and Technologies, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, People’s Republic of China
Wei Hong Zhang
Affiliation:
Instrumentation Analysis and Research Center, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, People’s Republic of China
*
a) Address all correspondence to these authors. e-mail: [email protected]
b) Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Crystalline tungsten suboxide nanowires were grown on silicon substrates by thermal evaporation of tungsten powder in a flow of argon gas without any catalyst. With different growth temperatures, two kinds of tungsten suboxide nanowires (W18O49 and W20O58) were obtained. The structures, morphologies, and compositions of these two nanowires were characterized by scanning electron microscopy (SEM), electron probe microanalyzer (EPMA), x-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), x-ray photoelectron spectroscopy (XPS), and Raman techniques. The results show that XRD and TEM are not good characterization techniques for identifying W18O49 and W20O58 nanowires; however, Raman spectroscopy (RS) is a powerful tool to distinguish the difference between them. This is due to the notable molecular bond contributing to the vibrational frequency.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Santato, C., Odziemkowski, M., Ulmann, M.Augustynski, J.: Crystallographically oriented mesoporous WO3 films: Synthesis, characterization, and applications. J. Am. Chem. Soc. 123, 10639 2001CrossRefGoogle ScholarPubMed
2Granqvist, C.G.: Electrochromic tungsten oxide films: Review of progress 1993–1998. Sol. Energy Mater. Sol. Cells 60, 201 2000CrossRefGoogle Scholar
3Baeck, S.H., Choi, K.S., Jaramillo, T.F., Stucky, G.D.McFarland, E.W.: Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films. Adv. Mater. 15, 1269 2003CrossRefGoogle Scholar
4Solis, J.L., Saukko, S., Kish, L., Granqvist, C.G.Lantto, V.: Semiconductor gas sensors based on nanostructured tungsten oxide. Thin Solid Films 391, 255 2001CrossRefGoogle Scholar
5Qu, W.M.Wlodarski, W.: A thin-film sensing element for ozone, humidity and temperature. Sens. Actuators, B 64, 42 2000CrossRefGoogle Scholar
6Shengelaya, A., Reich, S., Tsabba, Y.Müller, K.A.: Electron spin resonance and magnetic susceptibility suggest superconductivity in Na doped WO3 samples. Eur. Phys. J. B. 12, 13 1999CrossRefGoogle Scholar
7Li, X.L., Liu, J.F.Li, Y.D.: Large-scale synthesis of tungsten oxide nanowires with high aspect ratio. Inorg. Chem. 42, 921 2003CrossRefGoogle ScholarPubMed
8Liu, J.G., Zhao, Y.Zhang, Z.J.: Low-temperature synthesis of large-scale arrays of aligned tungsten oxide nanorods. J. Phys. Condens. Matter 15, L453 2003CrossRefGoogle Scholar
9Zhang, H.R., Feng, M., Liu, F., Liu, L.B., Chen, H.Y., Gao, H.J.Li, J.Q.: Structures and defects of WO3–x nanorods grown by in-situ heating tungsten filament. Chem. Phys. Lett. 389, 337 2004CrossRefGoogle Scholar
10Xiao, Z.D., Zhang, L.D., Tian, X.K.Fang, X.S.: Fabrication and structural characterization of porous tungsten oxide nanowires. Nanotechnology 16, 2647 2005CrossRefGoogle Scholar
11Wang, S.J., Chen, C.H., Ko, R.M., Kuo, Y.C., Wong, C.H., Wu, C.H., Uang, K.M., Chen, T.M.Liou, B.W.: Preparation of tungsten oxide nanowires from sputter-deposited WCx films using an annealing/oxidation process. Appl. Phys. Lett. 86, 63103 2005CrossRefGoogle Scholar
12Zhou, J., Gong, L., Deng, S.Z., Chen, J., She, J.C., Xu, N.S., Yang, R.S.Wang, Z.L.: Growth and field-emission property of tungsten oxide nanotip arrays. Appl. Phys. Lett. 87, 223108 2005CrossRefGoogle Scholar
13Frey, G.L., Rothschild, A., Sloan, J., Rosentsveig, R., Popovitz-Biro, R.Tenne, R.: Investigations of nonstoichiometric tungsten oxide nanoparticles. J. Solid State Chem. 162, 300 2001CrossRefGoogle Scholar
14Zhou, J., Xu, N.S., Deng, S.Z., Chen, J., She, J.C.Wang, Z.L.: Large-area nanowire arrays of molybdenum and molybdenum oxides: Synthesis and field-emission properties. Adv. Mater. 15, 1835 2003CrossRefGoogle Scholar
15Zhou, J., Ding, Y., Deng, S.Z., Gong, L., Xu, N.S.Wang, Z.L.: Three-dimensional tungsten oxide nanowire networks. Adv. Mater. 17, 2107 2005CrossRefGoogle Scholar
16 JCPDS Nos. 5-0392, 5-0393, and 5-0386. International Center for Diffraction Data; Newton Square, PA, 1974Google Scholar
17Bigey, C., Hilaire, L.Maire, G.: Catalysis on Pd/WO3 and Pd/WO2: Effect of the modifications of the surface states due to redox treatments on the skeletal rearrangement of hydrocarbons. J. Catal. 184, 406 1999CrossRefGoogle Scholar
18Guo, D.Z., Yu-Zhang, K., Gloter, A., Zhang, G.A.Xue, Z.Q.: Synthesis and characterization of tungsten oxide nanorods. J. Mater. Res. 19, 3665 2004CrossRefGoogle Scholar
19Lu, D.Y., Chen, J., Zhou, J., Deng, S.Z., Xu, N.S.Xu, J.B.: Raman spectroscopic study of oxidation and phase transition in W18O49 nanowires. J. Raman Spectrosc. 38, 176 2007CrossRefGoogle Scholar
20Cazzanelli, E., Vinegoni, C., Mariotto, G., Kuzmin, A.Purans, J.: Low-temperature polymorphism in tungsten trioxide powders and its dependence on mechanical treatments. J. Solid State Chem. 143, 24 1999CrossRefGoogle Scholar
21Sahle, W.: Electron-microscopy studies of W18O49: 1. Crystals formed by gaseous reduction of WO3. J. Solid State Chem. 45, 324 1982CrossRefGoogle Scholar