Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T15:31:11.885Z Has data issue: false hasContentIssue false

Morphology dependence of static magnetic and microwave electromagnetic characteristics of polymorphic Fe3O4 nanomaterials

Published online by Cambridge University Press:  30 June 2011

Guoxiu Tong*
Affiliation:
Zhejiang Key Laboratory for Reactive Chemistry on Solid Surface, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhu 321004, People’s Republic of China
Wenhua Wu
Affiliation:
Zhejiang Key Laboratory for Reactive Chemistry on Solid Surface, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhu 321004, People’s Republic of China
Ru Qiao
Affiliation:
Zhejiang Key Laboratory for Reactive Chemistry on Solid Surface, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhu 321004, People’s Republic of China
Jinhao Yuan
Affiliation:
Zhejiang Key Laboratory for Reactive Chemistry on Solid Surface, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhu 321004, People’s Republic of China
Jianguo Guan
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People’s Republic of China
Haisheng Qian
Affiliation:
Zhejiang Key Laboratory for Reactive Chemistry on Solid Surface, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhu 321004, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In the present work, Fe3O4 nanospheres, sponges, and urchins were prepared. Investigation of static magnetic and microwave electromagnetic (EM) characteristics of polymorphic Fe3O4 nanomaterials showed that morphology plays a crucial role in determining the resulting properties. Compared with Fe3O4 nanospheres and urchins, enhanced saturation magnetization and coercivity were observed in Fe3O4 sponges composed of ordered nanofibers. Enhancement of saturation magnetization and coercivity are associated with increased magnetic interactions and shape anisotropy, respectively. The Fe3O4 sponges and urchins produced reflection loss (RL) values of −35.77 dB at 8.0 GHz and −43.23 dB at 16.8 GHz, respectively. The excellent microwave absorption performance is ascribed to their unique morphologies. Such morphologies resulted in reinforced EM parameters and multiresonant behavior.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tong, G.X., Wu, W.H., Guan, J.G., Qian, H.S., and Yuan, J.H.: Synthesis and characterization of nanosized urchin-like α-Fe2O3 and Fe3O4: Microwave electromagnetic and absorbing properties. J. Alloy. Comp. 509, 4320 (2011).CrossRefGoogle Scholar
2.Fang, X.S., Ye, C.H., Xie, T., Wang, Z.Y., Zhao, J.W., and Zhang, L.D.: Regular MgO nanoflowers and their enhanced dielectric responses. Appl. Phys. Lett. 88, 013101 (2006).CrossRefGoogle Scholar
3.Cao, M.S., Shi, X.L., Fang, X.Y., Jin, H.B., Hou, Z.L., Zhou, W., and Chen, Y.J.: Microwave absorption properties and mechanism of cagelike ZnO/SiO2 nanocomposites. Appl. Phys. Lett. 91, 203110 (2007).CrossRefGoogle Scholar
4.Zhou, R.F., Qiao, L., Feng, H.T., Chen, J.T., Yan, D., Wu, Z.G., and Yan, P.X.: Microwave absorption properties and the isotropic antenna mechanism of ZnO nanotrees. J. Appl. Phys. 104, 094101 (2008).CrossRefGoogle Scholar
5.Yan, D., Cheng, S., Zhou, R.F., Chen, J.T., Feng, J.J., Feng, H.T., Li, H.J., Wu, Z.G., Wang, J., and Yan, P.X.: Nanoparticles and 3D sponge-like porous networks of manganese oxides and their microwave absorption properties. Nanotechnology 20, 105706 (2009).CrossRefGoogle ScholarPubMed
6.Tong, G.X., Guan, J.G., Xiao, Z.D., Mou, F.Z., Wang, W., and Yan, G.Q.: In situ generated H2 bubble-engaged assembly: A one-step approach for shape-controlled growth of Fe nanostructures. Chem. Mater. 20, 3535 (2008).CrossRefGoogle Scholar
7.Yu, H., Chen, M., Rice, P.M., Wang, S.X., White, R.L., and Sun, S.H.: Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett. 5, 379 (2005).CrossRefGoogle ScholarPubMed
8.Taberna, P.L., Mitra, S., Poizot, P., Simon, P., and Tarascon, J.M.: High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5, 567 (2006).CrossRefGoogle ScholarPubMed
9.Zeng, H., Li, J., Wang, Z.L., Liu, J.P., and Sun, S.H.: Bimagnetic core/shell FePt/Fe3O4 nanoparticles. Nano Lett. 4, 187 (2004).CrossRefGoogle Scholar
10.Peng, S. and Sun, S.H.: Synthesis and characterization of monodisperse hollow Fe3O4 nanoparticles. Angew. Chem. Int. Ed. 46, 4155 (2007).CrossRefGoogle ScholarPubMed
11.Chen, Y.J., Gao, P., Wang, R.X., Zhu, C.L., Wang, L.J., Cao, M.S., and Jin, H.B.: Porous Fe3O4/SnO2 core/shell nanorods: Synthesis and electromagnetic properties. J. Phys. Chem. C 113, 10061 (2009).CrossRefGoogle Scholar
12.Cao, J., Fu, W.Y., Yang, H.B., Yu, Q.J., Zhang, Y.Y., Wang, S.M., Zhao, H., Sui, Y.M., Zhou, X.M., Zhao, W.Y., Leng, Y., Zhao, H., Chen, H., and Qi, X.F.: Fabrication, characterization and application in electromagnetic wave absorption of flower-like ZnO/Fe3O4 nanocomposites. Mater. Sci. Eng., B 175, 56 (2010).CrossRefGoogle Scholar
13.Zhao, R., Jia, K., Wei, J.J., Pu, J.X., and Liu, X.B.: Hierarchically nanostructured Fe3O4 microspheres and their novel microwave electromagnetic properties. Mater. Lett. 64, 457 (2010).CrossRefGoogle Scholar
14.Yu, W.G., Zhang, T.L., Zhang, J.G., Qiao, X.J., Yang, L., and Liu, Y.H.: The synthesis of octahedral nanoparticles of magnetite. Mater. Lett. 60, 2998 (2006).CrossRefGoogle Scholar
15.Yan, G.Q., Guan, J.G., and Wang, W.: Monodispersed Fe3O4 hollow submicro-spheres prepared by pyrolysis-deoxidization. Acta Phys. Chim. Sin. 23, 1958 (2007).Google Scholar
16.Tong, G.X., Guan, J.G., and Zhang, Q.J.: Goethite hierarchical nanostructures: Glucose-assisted synthesis, chemical conversion into hematite with excellent photocatalytic properties. Mater. Chem. Phys. 127, 371 (2011).CrossRefGoogle Scholar
17.Tong, G.X., Guan, J.G., Wu, W.H., Li, L.C., Guan, Y., and Hua, Q.: Preparation and electrochemical properties of urchin-like α-Fe2O3 nanomaterials. Sci. China Technol. Sci. 53, 1897 (2010).CrossRefGoogle Scholar
18.Tong, G.X.: Study on gas flow/gas bubbles induced self-assembly techniques and magnetic nanostructures. Ph.D. Dissertation. Wuhan University of Technology, Wuhan, China, 119 (2009).Google Scholar
19.Osterhout, Von: Magnetic Oxides, in: Magnetic Oxides, edited by Craik, D.S. (Wiley, New York, 1975), p. 700.Google Scholar
20.Wang, X., Gong, R.Z., Li, P.G., Liu, L.Y., and Cheng, W.M.: Effects of aspect ratio and particle size on the microwave properties of Fe-Cr-Si-Al alloy flakes. Mater. Sci. Eng., A 466, 178 (2007).CrossRefGoogle Scholar
21.Kim, Y.D., Chung, J.Y., Kim, J., and Jeon, H.: Formation of nanocrystalline Fe-Co powders produced by mechanical alloying. Mater. Sci. Eng., A 219, 17 (2000).CrossRefGoogle Scholar
22.Wang, J., Sun, J.J., Sun, Q., and Chen, Q.W.: One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mater. Res. Bull. 38, 1113 (2003).CrossRefGoogle Scholar
23.Li, Z.W., Chen, L., Ong, C.K., and Yang, Z.: Static and dynamic magnetic properties of Co2Z barium ferrite nanoparticle composites. J. Mater. Sci. 40, 719 (2005).CrossRefGoogle Scholar
24.Mørup, S., Madsen, M.B., Franck, J., Villandsen, J., and Koch, C.J.W.: A new interpretation of Mössbauer spectra of microcrystalline goethite: “Super-ferromagnetism” or “super-spin-glass” behaviour? J. Magn. Magn. Mater. 40, 163 (1983).CrossRefGoogle Scholar
25.Li, Z.W., Ong, C.K., Yang, Z., Wei, F.L., Zhou, X.Z., Zhao, J.H., and Morrish, A.H.: Site preference and magnetic properties for a perpendicular recording material: BaFe12-xZnx/2Zrx/2O19 nanoparticles. Phys. Rev. B 62, 6530 (2000).CrossRefGoogle Scholar
26.de Bakker, P.M.A., De Grave, E., Vandenberghe, R.E., and Bowen, L.H.: Mössbauer study of small-particle maghemite. Hyperfine Interact. 54, 493 (1990).CrossRefGoogle Scholar
27.Wang, C., Han, X.J., Xu, P., Wang, J.Y., Du, Y.C., Wang, X.H., Qin, W., and Zhang, T.: Controlled synthesis of hierarchical nickel and morphology-dependent electromagnetic properties. J. Phys. Chem. C 114, 3196 (2010).CrossRefGoogle Scholar
28.Niu, H.L., Chen, Q.W., Ning, M., Jia, Y.S., and Wang, X.J.: Synthesis and one-dimensional self-assembly of acicular nickel nanocrystallites under magnetic fields. J. Phys. Chem. B 108, 3998 (2004).CrossRefGoogle Scholar
29.Tong, G.X., Guan, J.G., Xiao, Z.D., Huang, X., and Guan, Y.: In situ generated gas bubble-assisted modulation of the morphologies, photocatalytic, and magnetic properties of ferric oxide nanostructures synthesized by thermal decomposition of iron nitrate. J. Nanopart. Res. 12, 3025 (2010).CrossRefGoogle Scholar
30.Tong, G.X., Hua, Q., Wu, W.H., Qin, M.Y., Li, L.C., and Gong, P.J.: Effect of liquid-solid ratio on the morphology, structure, conductivity, and electromagnetic characteristics of iron particles. Sci. China Technol. Sci. 54, 484 (2011).CrossRefGoogle Scholar
31.Yang, Y., Xu, C.L., Xia, Y.X., Wang, T., and Li, F.S.: Synthesis and microwave absorption properties of FeCo nanoplates. J. Alloy. Comp. 493, 549 (2010).CrossRefGoogle Scholar
32.Tong, G.X., Wu, W.H., Hua, Q., Miao, Y.Q., Guan, J.G., and Qian, H.S.: Enhanced electromagnetic characteristics of carbon nanotubes/carbonyl iron powders complex absorbers in 2-18 GHz ranges. J. Alloy. Comp. 509, 451 (2011).CrossRefGoogle Scholar
33.Tong, G.X., Guan, J.G., Fan, X.A., Wang, W., and Li, W.: Influences of pyrolysis temperature on static magnetic and microwave electromagnetic properties of polycrystalline iron fibers. Acta Metall. Sin. 44, 867 (2008).Google Scholar
34.Ni, S.B., Sun, X.L., Wang, X.H., Zhou, G., Yang, F., Wang, J.M., and He, D.Y.: Low-temperature synthesis of Fe3O4 micro-spheres and its microwave absorption properties. Mater. Chem. Phys. 124, 353 (2010).CrossRefGoogle Scholar
35.Li, X.A., Han, X.J., Tan, Y.J., and Xu, P.: Preparation and microwave absorption properties of Ni-B alloy-coated Fe3O4 particles. J. Alloy. Comp. 464, 352 (2008).CrossRefGoogle Scholar
36.Li, Z.B., Beng, Y.D., Shen, B., and Hu, W.B.: Preparation and microwave absorption properties of Ni-Fe3O4 hollow spheres. Mater. Sci. Eng., B 146, 112 (2009).CrossRefGoogle Scholar
Supplementary material: File

Tong Supporting Information

Tong Supporting Information

Download Tong Supporting Information(File)
File 426.5 KB