Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T01:43:24.897Z Has data issue: false hasContentIssue false

Morphology and microstructural properties of TiO2 nanopowders doped with trivalent Al and Ga cations

Published online by Cambridge University Press:  31 January 2011

L. E. Depero
Affiliation:
Istituto Nazionale per la Fisica della Materia and Dipartimento di Meccanica, Università di Brescia, Via Branze 38, 25133 Brescia, Italy
A. Marino
Affiliation:
Istituto Nazionale per la Fisica della Materia and Dipartimento di Meccanica, Università di Brescia, Via Branze 38, 25133 Brescia, Italy
B. Allieri
Affiliation:
Istituto Nazionale per la Fisica della Materia and Dipartimento di Meccanica, Università di Brescia, Via Branze 38, 25133 Brescia, Italy
E. Bontempi
Affiliation:
Istituto Nazionale per la Fisica della Materia and Dipartimento di Meccanica, Università di Brescia, Via Branze 38, 25133 Brescia, Italy
L. Sangaletti
Affiliation:
Istituto Nazionale per la Fisica della Materia and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via Trieste 17, 25121 Brescia, Italy
C. Casale
Affiliation:
Ente Nazionale per l'Energia Elettrica, Struttura Ricerca, Via Reggio Emilia 39, 20090 Segrate, Italy
M. Notaro
Affiliation:
Ente Nazionale per l'Energia Elettrica, Struttura Ricerca, Via Reggio Emilia 39, 20090 Segrate, Italy
Get access

Abstract

The effects of doping on the morphological and microstructural properties of TiO2 nanopowders produced by laser pyrolysis were investigated mainly by x-ray diffraction (XRD) and electron microscopy. Samples of TiO2 powders were prepared by doping with different trivalent cations (Al and Ga). The powders were calcined at different temperatures in the range 400–1000 °C for 18 h, as well as at constant T = 700 °C up to 160 h. After each thermal treatment, XRD patterns were collected. The analysis of XRD patterns allowed us to estimate the microstrains and average crystallite size and to observe the evolution of the microstructural parameters with temperature. Both Al and Ga inhibited the crystallite growth of TiO2 anatase and the rutile phases, this effect being larger in the Al-doped powders.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Suryanarayana, C., Bull. Mater. Sci. 17, 307 (1994).CrossRefGoogle Scholar
2. Siegel, R.W., J. Phys. Chem. Solids 55, 1097 (1994).CrossRefGoogle Scholar
3. Eastman, J.A., J. Appl. Phys. 75, 770 (1994).CrossRefGoogle Scholar
4. Terwilliger, C.D., Nanostruct. Mater. 6, 651 (1994).CrossRefGoogle Scholar
5. Banfield, J.F., Bischoff, B.L., and Anderson, M.A., Chem. Geol. 110, 211 (1993).CrossRefGoogle Scholar
6. Eastman, J.A., J. Appl. Phys. 75, 770 (1994).CrossRefGoogle Scholar
7. Kumar, K.N.P, Appl. Catal., A 119, 163 (1994).CrossRefGoogle Scholar
8. Gribb, A.A. and Banfield, J.F., Am. Mineral. 82, 717 (1997).CrossRefGoogle Scholar
9. Ye, X.S., Sha, J., Jiao, Z.K., Peng, Z.F., and Zhang, L.D., J. Mater. Sci. Technol. 13, 359 (1997).Google Scholar
10. Zhang, H.Z. and Banfield, J.F., J. Mater. Chem. 8, 2073 (1998).CrossRefGoogle Scholar
11. Ding, X.Z. and Liu, X.H., J. Mater. Res. 13, 2556 (1998).CrossRefGoogle Scholar
12. Cheng, H.M., Ma, J.M., Zhao, Z.G., and Qi, L.M., Chem. Mater. 7, 663 (1995).CrossRefGoogle Scholar
13. Chhabra, V., Pillai, V., Mishra, B.K., Morrone, A., and Shah, D.O., Langmuir 11, 3307 (1995).CrossRefGoogle Scholar
14. Bokhimi, X., Morales, A., Novaro, O., Lopez, T., Chimal, O., Asomoza, M., and Gomez, R., Chem. Mater. 9, 2616 (1997).CrossRefGoogle Scholar
15. Ding, X.Z. and Liu, X.H., J. Alloys Compd. 248, 143 (1997).CrossRefGoogle Scholar
16. Tonejc, A.M., Turkovic, A., Gotic, M., Music, S., Vukovic, M., Trojko, R., and Tonejc, A., Mater. Lett. 31, 127 (1997).CrossRefGoogle Scholar
17. Suresh, C., Biju, V., Mukundan, P., and Warrier, K.G.K, Polyhedron 17, 3131 (1998).CrossRefGoogle Scholar
18. Ding, X.Z., Liu, X.H., and He, Y.Z., J. Mater. Sci. Lett. 15, 1789 (1996).CrossRefGoogle Scholar
19. MacKenezie, K.J.D, Trans. J. Br. Ceram. Soc. 74, 29 (1975).Google Scholar
20. Kamal Akhtar, M., Pratsinis, S.E., and Mastrangelo, S.V.R, J. Mater. Res. 9, 1241 (1994).CrossRefGoogle Scholar
21. Chen, C.J. and Wu, J.M., Mater. Sci. Eng. B5, 377 (1990).CrossRefGoogle Scholar
22. Vargas, S., Arroyo, R., Haro, E., and Rodriguez, R., J. Mater. Res. 14, 3932 (1999).CrossRefGoogle Scholar
23. Uckawa, N., Kurashima, Y., Kakegawa, K., and Sasaki, Y., J. Mater. Res. 15, 967 (2000).CrossRefGoogle Scholar
24. Akhtar, M.K., Pratsinis, S.E., and Mastrangelo, S.V.R, J. Am. Ceram. Soc. 75, 3408 (1992).CrossRefGoogle Scholar
25. Avrami, M., J. Chem. Phys. 7, 1103 (1939).CrossRefGoogle Scholar
26. Depero, L.E. J. Solid State Chem. 104, 470 (1993).CrossRefGoogle Scholar
27. Shannon, R.D., J. Appl. Phys. 35, 3414 (1964).CrossRefGoogle Scholar
28. Curcio, F., Musci, M., Notaro, N., and De Michele, G., Appl. Surf. Sci. 46, 225 (1990).CrossRefGoogle Scholar
29. Musci, M., Notaro, M., Curcio, F., Casale, C., and De Michele, G., J. Mater. Res. 7, 2846 (1992).CrossRefGoogle Scholar
30. Depero, L.E., Bonzi, P., Musci, M., and Casale, C., J. Solid State Chem. 111, 247 (1994).CrossRefGoogle Scholar
31. Depero, L.E., Sangaletti, L., Allieri, B., Bontempi, E., Salari, R., Zocchi, M., Casale, C., and Notaro, M., J. Mater. Res. 13, 1644 (1998).CrossRefGoogle Scholar
32. Depero, L.E., Sangaletti, L., Allieri, B., Pioselli, F., Casale, C., and Notaro, M., Mater. Sci. Forum 278-281, 654 (1998).CrossRefGoogle Scholar
33. The calculations were performed using the two programs, General Peak Separation Routine—MARQFIT (1990) and Line Broadening Analysis by WAXS (1992) by L. Luterotti and P. Scardi.Google Scholar
34. Nandi, R.K., Kuo, H.K., Shosberg, W., Wissler, G., Cohen, J.B., and Crist, B. Jr, J. Appl. Crystallogr. 17, 22 (1984).CrossRefGoogle Scholar
35. ICSD Inorganic Crystal Structure Database, Release 95/1, FIZ-Fachinformationszentrum Karlsruhe and GMELIN-Institut.Google Scholar
36. Xing-Zhao, and Liu, Xiang-Huai, J. Mater. Res. 13, 2556 (1998).Google Scholar
37.JCPDF Database, Card No. 431012, International Centre for Diffraction Data, β–Ga2O3 phase, monoclinic (1998).Google Scholar