Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T03:37:25.191Z Has data issue: false hasContentIssue false

Morphology and gas barrier properties of thin SiOxcoatings on polycarbonate: Correlations with plasma-enhanced chemical vapor deposition conditions

Published online by Cambridge University Press:  31 January 2011

Ahmet G. Erlat
Affiliation:
Departments of Materials Science & Engineering and Chemical Engineering, North Carolina State University, Raleigh, North Carolina 27695
Bo-Chy Wang
Affiliation:
Departments of Materials Science & Engineering and Chemical Engineering, North Carolina State University, Raleigh, North Carolina 27695
Richard J. Spontak*
Affiliation:
Departments of Materials Science & Engineering and Chemical Engineering, North Carolina State University, Raleigh, North Carolina 27695
Yelena Tropsha
Affiliation:
Polymer Science & Technology Department, Becton Dickinson Technologies, Research Triangle Park, North Carolina 27709
Kevin D. Mar
Affiliation:
Polymer Science & Technology Department, Becton Dickinson Technologies, Research Triangle Park, North Carolina 27709
David B. Montgomery
Affiliation:
Polymer Science & Technology Department, Becton Dickinson Technologies, Research Triangle Park, North Carolina 27709
Erwin A. Vogler
Affiliation:
Polymer Science & Technology Department, Becton Dickinson Technologies, Research Triangle Park, North Carolina 27709
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Plasma-enhanced chemical vapor deposition of SiOx coatings on thermoplastics provides a viable route for production of transparent composite materials with high fracture toughness and high gas barrier properties, which are important considerations in the food packaging and biomedical device industries. By examining several series of systematically varied SiOx/polycarbonate composites, we have identified design correlations between coating characteristics (thickness, density, surface roughness, and O2 transmission) and deposition conditions (time, power, pressure, and flow rates). Of particular interest is the observation that the thermal activation energy for O2 permeation through these composites increases (by up to 17 kJ/mol) as their barrier efficacy increases.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Krug, T., Ludwig, R., and Steiniger, G., SVC 36th Annu. Tech. Conf. Proc., 302 (1993).Google Scholar
2.Chahroudi, D., SVC 34th Annu. Tech. Conf. Proc., 130 (1991).Google Scholar
3.Chahroudi, D., SVC 31st Annu. Tech. Conf. Proc., 145 (1988).Google Scholar
4.Chahroudi, D., SVC 32nd Annu. Tech. Conf. Proc., 29 (1989).Google Scholar
5.Krug, T.G., SVC 33rd Annu. Tech. Conf. Proc., 163 (1990).Google Scholar
6.Jamieson, E.H.H and Windle, A.H., J. Mater. Sci. 18, 64 (1983).CrossRefGoogle Scholar
7.Menges, G., Michaeli, W., Plein, P., Ludwig, R., and Brinkman, T., Coatings 22, 2 (1989).Google Scholar
8.Keiser, J. and Neusch, M., Thin Solid Films 118, 203 (1984).CrossRefGoogle Scholar
9.Shepard, T.A., DelSorbo, C.R., Louth, R.M., Walborn, J.L., Norman, D.A., Harvey, N.G., and Spontak, R.J., J. Polym. Sci. B: Polym. Phys. 35, 2617 (1997).3.0.CO;2-M>CrossRefGoogle Scholar
10.Bauer, T., Thomann, R., and Mülhaupt, R., Macromolecules 31, 7651 (1998).CrossRefGoogle Scholar
11.Mercea, P.V. and Bartan, M., J. Membrane Sci. 59, 353 (1991).CrossRefGoogle Scholar
12.Felts, J.T., SVC 33rd Annu. Tech. Conf. Proc., 184 (1990).Google Scholar
13.Jansen, F., AVS Short Course Program, 43rd National Symposium, Philadelphia, PA, 1996.Google Scholar
14.Eden, J.G., in Thin Film Processes II, edited by Vossen, J. and Kern, W. (Academic Press, Boston, 1991), p. 443.CrossRefGoogle Scholar
15.Chang, R.P.H, Darack, S., Lane, E., Chang, C.C., Allara, D., and Ong, E., J. Vac. Sci. Technol., B 1, 935 (1983).CrossRefGoogle Scholar
16.Batey, J. and Tierney, E., J. Appl. Phys. 60, 3136 (1986).CrossRefGoogle Scholar
17.Felts, J.T. and Grubb, A.D., J. Vac. Sci. Technol., A 10, 1675 (1992).CrossRefGoogle Scholar
18.Nelson, R.J., SVC 35th Annu. Tech. Conf. Proc., 75 (1992).Google Scholar
19.Knoll, R.W. and Theil, J.A., SVC 38th Annu. Tech. Conf. Proc., 425 (1995).Google Scholar
20.Erlat, A.G., Spontak, R.J., Clark, R.J., Robinson, T.C., Haaland, P.D., Tropsha, Y., Harvey, N.G., and Vogler, E.A., J. Phys. Chem. B 103, 6047 (1999).CrossRefGoogle Scholar
21.Montgomery, B.D., U.S. Patent No. 5 766 362 (16 June 1998).Google Scholar
22.Magonov, S.N., Elings, Y., and Whangbo, M.H., Surface Science 375, L385 (1997).CrossRefGoogle Scholar
23.Felts, J.T., SVC 34th Annu. Tech. Conf. Proc., 99 (1991).Google Scholar
24.Wang, B-C., Erlat, A.G., Spontak, R.J., Tropsha, Y.G., Vogler, E.A., Dalvie, M., and Mar, K., ACS Polymer Preprints 38, 1018 (1997).Google Scholar
25.Lee, J.H., Kim, D.S., and Lee, Y.H., J. Electrochem. Soc. 143, 1442 (1996).Google Scholar
26.Born, M. and Wolf, E., Principles of Optics (Pergamon Press, Oxford, England, 1965), p. 83.Google Scholar
27.Wang, B-C., Tropsha, Y., Montgomery, D.B., Vogler, E.A., and Spontak, R.J., J. Mater. Sci. Lett. 18, 311 (1999).CrossRefGoogle Scholar
28.Costello, L.M. and Koros, W.J., J. Polym. Sci. B: Polym. Phys. 32, 701 (1994).CrossRefGoogle Scholar
29.Yasuda, H., Plasma Polymerization (Academic Press, New York, 1985), p. 277.CrossRefGoogle Scholar
30.Sahli, S., Segui, Y., Ramdani, S., and Takkouk, Z., Thin Solid Films 250, 206 (1994).CrossRefGoogle Scholar
31.Theil, J.A., Brace, J.G., and Knoll, R.W., J. Vac. Sci. Tech. A 12, 1365 (1994).CrossRefGoogle Scholar
32.Herrak, T.V. and Thomson, D.J., J. Appl. Phys. 67, 6347 (1990).CrossRefGoogle Scholar
33.Benmalek, M. and Dunlop, H.M., Surf. Coat. Tech. 76/77, 821 (1995).CrossRefGoogle Scholar
34.Philips, R.W., Markantes, T., and LeGallee, C., SVC 36th Annu. Tech. Conf. Proc., 293 (1993).Google Scholar
35.Bogart, K.H.A, Dalleska, N.F., Bogart, G.R., and Fisher, E.R., J. Vac. Sci. Tech. A 13, 476 (1995).CrossRefGoogle Scholar
36.Korzec, D., Theirich, D., Werner, F., Traub, K., and Engemann, J., J. Surf. Coat. Tech. 74/75, 67 (1995).CrossRefGoogle Scholar
37.Korzec, D., Werner, F., Brockhaus, A., Engemann, J., Schneider, T.P., and Nemanich, R.J., J. Vac. Sci. Tech. A 13, 2074 (1995).CrossRefGoogle Scholar
38.Engineering Plastics, Engineered Materials Handbook Vol. 2 (ASM International, OH, 1988), p. 151.Google Scholar
39.Permeability and Other Film Properties of Plastics and Elastomers (Plastics Design Library, New York, 1995), p. 113.Google Scholar
40.Garcia-Ayuso, G., Vazquez, L., and Martinez-Duart, J.M., Surf. Coat. Tech. 80, 203 (1996).CrossRefGoogle Scholar
41.Barker, C.P., Kochem, K.H., Revell, K.M., Kelly, R.S.A, and Badyal, J.P.S, Thin Solid Films 46, 259 (1995).Google Scholar
42.Perkins, W.G. and Begeal, D.R., J. Chem. Phys. 54, 1683 (1971).CrossRefGoogle Scholar
43.Norton, F.J., J. Amer. Ceramic Soc. 36, 90 (1953).CrossRefGoogle Scholar
44.Stannet, V., in Diffusion in Polymers, edited by Crank, J. (Academic Press, New York, 1968), p. 41.Google Scholar
45.Roberts, A.P., Henry, B.M., Sutton, A.P., Grovenor, C.R.M, Briggs, G.A.D, Miyamoto, T., Kano, M., Tsukahara, Y., and Yanaka, M. (unpublished).Google Scholar
46.Tropsha, Y.G. and Harvey, N.G., J. Phys. Chem. B 101, 2239 (1997).CrossRefGoogle Scholar
47.Yanaka, M., Takada, Y., Tsukahara, Y., Miyamoto, T., Henry, B.M., Roberts, A.P., Grovenor, C.R.M, Sutton, A.P., Briggs, G.A.D, and Chater, R., Thin Solid Films (in press).Google Scholar
48.Shelekhin, A.B., Dixon, A.G., and Ma, Y.H., AIChE J. 41, 58 (1995).CrossRefGoogle Scholar
49.Norton, F.J., Nature 191, 701 (1961).CrossRefGoogle Scholar
50.Doremus, R.H., Glass Science (John Wiley & Sons, London, England, 1973), p. 213.Google Scholar