Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T22:30:40.079Z Has data issue: false hasContentIssue false

Morphologies and Related Electronic Properties of Carbon Nanotubes

Published online by Cambridge University Press:  31 January 2011

J-C. Charlier
Affiliation:
Unité de Physico-Chimie et de Physique des Matériaux, Université Catholique de Louvain, 1 Place Croix du Sud, B–1348 Louvain-la-Neuve, Belgium
Get access

Abstract

The electronic structures of different morphologies of carbon nanotubes are investigated within either tight-binding or ab initio frameworks. After a brief description of the electronic properties of the “perfect” rolled-up graphene sheet, nanotubes containing pentagon-heptagon pairs, tips (hemispherical caps), sp3-like lines responsible for polygonization, multishell and solid-state packings (bundles) are studied in order to point out the influence of such defects on the electronic states of the “perfect” cylinders. Most of the time, a structural optimization was performed on the atomic topology, prior to the calculation of the electronic properties. Connections with experimental facts are indicated as frequently as possible.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C., Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, 1996).Google Scholar
2.Iijima, S. and Ichihashi, T., Nature (London) 363, 603 (1993).CrossRefGoogle Scholar
3.Bethune, D. S., Klang, C. H., de Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., and Beyers, R., Nature (London) 363, 605 (1993).CrossRefGoogle Scholar
4.Iijima, S., Nature (London) 354, 56 (1991).CrossRefGoogle Scholar
5.Treacy, M. M. J., Ebbesen, T. W., and Gibson, J. M., Nature (London) 381, 678 (1996).CrossRefGoogle Scholar
6.Ebbesen, T. W., Hiura, H., Fujita, J., Ochiai, Y., Matsui, S., and Tanigaki, K., Chem. Phys. Lett. 209, 83 (1993).CrossRefGoogle Scholar
7.Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y. H., Kim, S. G., Colbert, D. T., Scuseria, G., Tomanek, D., Fischer, J. E., and Smalley, R. E., Science 273, 483 (1996).CrossRefGoogle Scholar
8.Hamada, N., Sawada, S., and Oshiyama, A., Phys. Rev. Lett. 68, 1579 (1992).CrossRefGoogle Scholar
9.Saito, R., Fujita, M., Dresselhaus, G., and Dresselhaus, M. S., Appl. Phys. Lett. 60, 2204 (1992); Phys. Rev. B 46, 1804 (1992).CrossRefGoogle Scholar
10.Tanaka, K., Okahara, K., Okada, M., and Yamabe, T., Chem. Phys. Lett. 191, 469 (1992).CrossRefGoogle Scholar
11.Mintmire, J. W., Dunlap, B. I., and White, C. T., Phys. Rev. Lett. 68, 631 (1992).CrossRefGoogle Scholar
12.Harigaya, K., Phys. Rev. B 45, 12071 (1992).CrossRefGoogle Scholar
13.White, C. T., Robertson, D. H., and Mintmire, J. W., Phys. Rev. B 47, 5485 (1993).CrossRefGoogle Scholar
14.Wildöer, J. W. G., Venema, L. C., Rinzler, A. G., Smalley, R. E., and Dekker, C., Nature (London) 391, 59 (1998).CrossRefGoogle Scholar
15.Odom, T. W., Huang, J-L., Kim, P., and Lieber, C. M., Nature (London) 391, 62 (1998).CrossRefGoogle Scholar
16.Ebbesen, T. W. and Takada, T., Carbon 33, 973 (1995).CrossRefGoogle Scholar
17.Kosaka, M., Ebbesen, T. W., Hiura, H., and Tanigaki, K., Chem. Phys. Lett. 233, 47 (1995).CrossRefGoogle Scholar
18.Dresselhaus, M. S., Physics World 9, May 18–19 (1996).CrossRefGoogle Scholar
19.Tamura, R. and Tsukada, M., Phys. Rev. B 49, 7697 (1994).CrossRefGoogle Scholar
20.Akagi, K., Tamura, R., and Tsukada, M., Phys. Rev. Lett. 74, 2307 (1995).CrossRefGoogle Scholar
21.Lambin, Ph., Fonseca, A., Vigneron, J-P., Nagy, J. B., and Lucas, A. A., Chem. Phys. Lett. 245, 85 (1995).CrossRefGoogle Scholar
22.Dunlap, B. I., Phys. Rev. B 46, 1933 (1992).CrossRefGoogle Scholar
23.Dunlap, B. I., Phys. Rev. B 49, 5643 (1994).CrossRefGoogle Scholar
24.Saito, R., Dresselhaus, M. S., and Dresselhaus, G., Phys. Rev. B 53, 2044 (1996).CrossRefGoogle Scholar
25.Charlier, J-C., Ebbesen, T. W., and Lambin, Ph., Phys. Rev. B 53, 11 108 (1996).CrossRefGoogle Scholar
26.Chico, L., Crespi, V. H., Benedict, L. X., Louie, S. G., and Cohen, M. L., Phys. Rev. Lett. 76, 971 (1996).CrossRefGoogle Scholar
27.Collins, P. G., Zettl, A., Bando, H., Thess, A., and Smalley, R. E., Science 278, 100 (1997).CrossRefGoogle Scholar
28.Blase, X., Charlier, J-C., De Vita, A., and Car, R., Appl. Phys. Lett. 70, 197 (1997).CrossRefGoogle Scholar
29.Iijima, S., Ichihashi, T., and Ando, Y., Nature (London) 356, 776 (1992).Google Scholar
30.Ajayan, P. M., Ichihashi, T., and Iijima, S., Chem. Phys. Lett. 202, 384 (1993).CrossRefGoogle Scholar
31.Tamura, R. and Tsukada, M., Phys. Rev. B 52, 6015 (1995).CrossRefGoogle Scholar
32.Carroll, D. L., Redlich, P., Ajayan, P. M., Charlier, J-C., Blase, X., De Vita, A., and Car, R., Phys. Rev. Lett. 78, 2811 (1997).CrossRefGoogle Scholar
33.de Heer, W. A., Chatelain, A., and Ugarte, D., Science 270, 1179 (1995).CrossRefGoogle Scholar
34.Rinzler, A. G., Hatner, J. H., Nikolaev, P., Lou, L., Kim, S. G., Tomanek, D., Nordlander, P., Colbert, D. T., and Smalley, R. E., Science 269, 1550 (1995).CrossRefGoogle Scholar
35.Collins, P. G. and Zettl, A., Appl. Phys. Lett. 69, 1969 (1996).CrossRefGoogle Scholar
36.Lambin, Ph., Lucas, A. A., and Charlier, J-C., J. Phys. Chem. Solids 58, 1833 (1997).CrossRefGoogle Scholar
37.Dai, H., Hafner, J. H., Rinzler, A. G., Colbert, D. T., and Smalley, R. E., Nature (London) 384, 147 (1996).CrossRefGoogle Scholar
38.Ajayan, P. M., Ebbesen, T. W., Ichihashi, T., Iijima, S., Tanigaki, K., and Hiura, H., Nature (London) 362, 522 (1993).CrossRefGoogle Scholar
39.Liu, M. and Cowley, J. M., Carbon 32, 393 (1994); Ultramicroscopy 53, 333 (1994).CrossRefGoogle Scholar
40.Allard, L. F. and Seraphin, S., private communication (1996); see also S. Seraphin, D. Zhou, and J. Jiao, Acta Microscópia 3, 45 (1994).Google Scholar
41.Hiura, H., Ebbesen, T. W., Fujita, J., Tanigaki, K., and Takada, T., Nature (London) 367, 148 (1994).CrossRefGoogle Scholar
42.Charlier, J-C., Lambin, Ph., and Ebbesen, T. W., Phys. Rev. B 54, R8377 (1996).CrossRefGoogle Scholar
43.Blase, X., Benedict, L. X., Shirley, E. L., and Louie, S. G., Phys. Rev. Lett. 72, 1878 (1994).CrossRefGoogle Scholar
44.Blase, X., private communication (1997).Google Scholar
45.Charlier, J-C., Gonze, X., and Michenaud, J-P., Europhys. Lett. 29, 43 (1995).CrossRefGoogle Scholar
46.Tersoff, J. and Ruoff, R. S., Phys. Rev. Lett. 73, 676 (1994).CrossRefGoogle Scholar
47.Ruoff, R. S., Tersoff, J., Lorents, D. C., Subramoney, S., and Chan, B., Nature (London) 364, 514 (1993).CrossRefGoogle Scholar
48.Saito, R., Dresselhaus, G., and Dresselhaus, M. S., J. Appl. Phys. 73, 494 (1993).CrossRefGoogle Scholar
49.Charlier, J-C. and Michenaud, J-P., Phys. Rev. Lett. 70, 1858 (1993).CrossRefGoogle Scholar
50.Ebbesen, T. W. and Ajayan, P. M., Nature (London) 358, 220 (1992).CrossRefGoogle Scholar
51. Ph. Lambin, Philippe, L., Charlier, J-C., and Michenaud, J-P., Comput. Mater. Sci. 2, 350 (1994); Ph. Lambin, J-C. Charlier, and J-P. Michenaud, Electronic Properties of Novel Materials, Kuzmany, H., Fink, J., Mehring, M., and Roth, S. (World Scientific Publishing Co. Ltd., Singapore, 1994).Google Scholar
52.Olk, C. H. and Heremans, J. P., J. Mater. Res. 9, 259 (1994).CrossRefGoogle Scholar
53.Langer, L., Stockman, L., Heremans, J. P., Bayot, V., Olk, C. H., Van Haesendonck, C., Bruynseraede, Y., and Issi, J-P., J. Mater. Res. 9, 927 (1994); L. Langer, V. Bayot, E. Grivei, J-P. Issi, J. P. Heremans, C. H. Olk, L. Stockman, C. Van Haesendonck, and Y. Bruynseraede, Phys. Rev. Lett. 76, 479 (1996).CrossRefGoogle Scholar
54.Dai, H., Wong, E. W., and Lieber, C. M., Science 272, 523 (1996).CrossRefGoogle Scholar
55.Kasumov, A. Y., Khodos, I. I., Ajayan, P. M., and Colliex, C., Europhys. Lett. 34, 429 (1996).CrossRefGoogle Scholar
56.Ebbesen, T. W., Lezec, H. J., Hiura, H., Bennett, J. W., Ghaemi, H. F., and Thio, T., Nature (London) 382, 54 (1996).CrossRefGoogle Scholar
57.Fischer, J. E., Dai, H., Thess, A., Lee, R., Hanjani, N. M., Dehaas, D. L., and Smalley, R. E., Phys. Rev. B 55, R4921 (1997).Google Scholar
58.Ajayan, P. M., Iijima, S., and Ichiashi, T., Phys. Rev. B 47, 6859 (1993).CrossRefGoogle Scholar
59.Charlier, J-C., Gonze, X., and Michenaud, J-P., Phys. Rev. B 43, 4579 (1991); Carbon 32, 289 (1994).CrossRefGoogle Scholar
60.Miyamoto, Y., Phys. Rev. B 54, R11 149 (1996).CrossRefGoogle Scholar
61.Guerret-Piécourt, C., Bouar, Y. Le, Loiseau, A., and Pascard, H., Nature (London) 372, 761 (1994).CrossRefGoogle Scholar
62.Rubio, A., Miyamoto, Y., Blase, X., Cohen, M. L., and Louie, S. G., Phys. Rev. B 53, 4023 (1996).CrossRefGoogle Scholar
63.Journet, C., Maser, W. K., Bernier, P., Loiseau, A., de la Chapelle, M. Lamy, Lefrant, S., Deniard, P., Lee, R., and Fischer, J. E., Nature (London) 388, 756 (1997).CrossRefGoogle Scholar
64.Tans, S. J., Devoret, M. H., Dai, H., Thess, A., Smalley, R. E., Geerligs, L. J., and Dekker, C., Nature (London) 386, 474 (1997).CrossRefGoogle Scholar
65.Bockrath, M., Cobden, D. H., McEuen, P. L., Chopra, N. G., Zettl, A., Thess, A., and Smalley, R. E., Science 275, 1922 (1997).CrossRefGoogle Scholar
66.Lee, R. S., Kim, H. J., Fischer, J. E., Thess, A., and Smalley, R. E., Nature (London) 388, 255 (1997).CrossRefGoogle Scholar
67.Rao, A. M., Eklund, P. C., Bandow, S., Thess, A., and Smalley, R. E., Nature (London) 388, 257 (1997).CrossRefGoogle Scholar