Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T11:49:34.693Z Has data issue: false hasContentIssue false

Morphological studies of nanoclusters on grid-supported polymer thin films

Published online by Cambridge University Press:  31 January 2011

Richard J. Spontak*
Affiliation:
Miami Valley Laboratories, The Procter & Gamble Company, Cincinnati, Ohio 45239-8707
Janet L. Burns
Affiliation:
Miami Valley Laboratories, The Procter & Gamble Company, Cincinnati, Ohio 45239-8707
Charles J. Echer
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley Laboratory, Berkeley, California 94720
*
a)Author to whom correspondence should be addressed at the Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907.
Get access

Abstract

Modification of substrates by controlled deposition of nanometer-size particulates (nanoclusters) is an efficient means of fabricating materials designed for applications in which specific surface interactions play a vital role (e.g., molecular catalysis and microelectronics). We have found that highly dispersed nanoclusters form on thin films of poly(siloxaneimide) (PSI) copolymers supported on copper transmission electron microscopy (TEM) grids when subjected to long anneals at elevated temperatures. In this note, we report on the composition and source of these anomalous nanoclusters, as determined by a variety of electron microscopical techniques. Spectra obtained with parallel electron energy-loss spectroscopy (PEELS) indicate that these particulates, which typically measure 4–18 nm in diameter, are composed of copper with a mean valence of +1. Electron microdiffraction patterns reveal that the nanoclusters are polycrystalline, possessing lattice spacings similar to those of Cu2O. Mechanistic routes of formation are suggested based on experimental design, and factors influencing formation are also described.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Jena, P., Khanna, S.N., Rao, B. K., and Manninen, M., in Clusters and Cluster-Assembled Materials, edited by Averback, R. S., Bernholc, J., and Nelson, D. L. (Mater. Res. Soc. Symp. Proc. 206, Pittsburgh, PA, 1991), p. 3.Google Scholar
2.Steigerwald, M. L. and Brus, L. E., Annu. Rev. Mater. Sci. 19, 471 (1989).CrossRefGoogle Scholar
3.Pettiette, C. L., Yang, S.H., Craycraft, M. J., Conceicao, J., Laaksonen, R.T., Cheshnovsky, O., and Smalley, R. E., J. Chem. Phys. 88, 5377 (1988).CrossRefGoogle Scholar
4.de Crescenzi, M., Diociaiuti, M., Lozzi, L., Picozzi, P., and Santucci, S., Phys. Rev. B 35, 5997 (1987).CrossRefGoogle Scholar
5.Samseth, J., Mortensen, K., Burns, J. L., and Spontak, R. J., J. Appl. Polym. Sci. 44, 1245 (1992).CrossRefGoogle Scholar
6.Burns, J. L., Spontak, R.J., and Echer, C. J., in Proc. 49th Ann. Meet. Electron Microsc. Soc. Am., edited by Bailey, G. W. (San Francisco Press, San Francisco, 1991), pp. 11221123.Google Scholar
7.Burns, J. L. and Spontak, R. J., J. Microsc. (in press).Google Scholar
8.Meakin, P., Annu. Rev. Phys. Chem. 39, 237 (1988).CrossRefGoogle Scholar
9.Egerton, R. F., Electron Energy-Loss Spectroscopy in the Electron Microscope (Plenum Press, New York, 1986).Google Scholar
10. National Bureau of Standards Circular 539, Vol. II, 23 (1953).Google Scholar
11.Jiang, P., Jona, F., and Marcus, P. M., Phys. Rev. B 36, 6336 (1987).CrossRefGoogle Scholar
12.Tourillon, G., Dartyge, E., Fontaine, A., and Jucha, A., Phys. Rev. Lett. 57, 603 (1986).CrossRefGoogle Scholar
13.CRC Handbook of Chemistry and Physics, 61st ed., edited by Weast, R. C. (CRC Press, Boca Raton, FL, 1980), pp. B97, B99.Google Scholar
14.Jensen, F., Besenbacher, F., Lsgsgaard, E., and Stensgaard, I., Surf. Sci. Lett. 259, L774 (1991).Google Scholar
15.Ho, J.H. and Vook, R.W., J. Cryst. Growth 44, 561 (1978).CrossRefGoogle Scholar
16.Kaito, C., Nakata, Y., Saito, Y., Naiki, T., and Fujita, K., J. Cryst. Growth 74, 469 (1986).CrossRefGoogle Scholar
17.Burns, J. L., Spontak, R. J., and Echer, C. J., presented at the 49th Ann. Meet. Electron Microsc. Soc. Am., San Jose, CA (1991).CrossRefGoogle Scholar
18.Serfaty, I.W., in Polyimides: Synthesis, Characterization, and Applications, edited by Mittal, K. L. (Plenum Press, New York, 1984), Vol. I, pp. 149161.CrossRefGoogle Scholar
19.Chow, G.M., Chien, C.L., and Edelstein, A.S., J. Mater. Res. 6, 8 (1991).CrossRefGoogle Scholar
20.Samseth, J., Spontak, R.J., and Mortensen, K., J. Polym. Sci., Polym. Phys. Ed. (in press).Google Scholar
21.Domingue, A., Dignard-Bailey, L., Sacher, E., Yelon, A., and Ellis, T. H., in Metallization of Polymers, edited by Sacher, E., Pireaux, J-J., and Kowalczyk, S. P. (ACS Symp. Ser. 440, Washington, DC, 1990), Chap. 20.Google Scholar
22.Stewart, W. C., Leu, J., and Jensen, K. F., in Interfaces between Polymers, Metals, and Ceramics, edited by DeKoven, B. M., Gellman, A. J., and Rosenberg, R. (Mater. Res. Soc. Symp. Proc. 153, Pittsburgh, PA, 1989), p. 285.Google Scholar
23.Currie, J.F., Depelsenaire, P., Groleau, R., and Sacher, E.J., J. Colloid Interface Sci. 97, 410 (1984).CrossRefGoogle Scholar
24.Cotton, F. A. and Wilkinson, G., Advanced Inorganic Chemistry, 4th ed. (Wiley Interscience, New York, 1980).Google Scholar
25.Bodö, P., Uvdal, K., Stafström, S., and Salaneck, W.R., in Metallization of Polymers, edited by Sacher, E., Pireaux, J-J., and Kowalczyk, S. P. (ACS Symp. Ser. 440, Washington, DC, 1990), Chap. 24.Google Scholar
26.Rye, R.R., reported by R. Dagani, C&EN, Jan. 6, 1992.Google Scholar