Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T19:34:11.607Z Has data issue: false hasContentIssue false

Molecular orientation of methylene blue intercalated in layer-charge-controlled montmorillonites

Published online by Cambridge University Press:  31 January 2011

Yoshiro Kaneko
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
Nobuo Iyi*
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
Juraj Bujdák
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, Bratislava, SK-845 36, Slovak Republic
Ryo Sasai
Affiliation:
Research Center for Advanced Waste and Emission Management, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Takektoshi Fujita
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The effect of the layer-charge density of clay on the orientation and aggregation of a cationic dye, methylene blue (MB), in MB/clay films was investigated using a series of layer-charge-controlled montmorillonites as host materials. Polarized ultraviolet-visible spectroscopy and x-ray diffraction were used for the characterization of the arrangement and orientation of dye cations in host interlayer spaces. It was revealed that high charge densities of layers induced the formation of relatively ordered and homogeneous phases with dye dimers. The reduction of the charge led to the formation of disordered, mixed phases with large amounts of monomers (isolated dye cations). Dimers and monomers were slightly tilted against the plane of the clay surface, and their angles were not affected by the layer charge.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ogawa, M. and Kuroda, K., Chem. Rev. 95, 399 (1995).CrossRefGoogle Scholar
2.Shichi, T. and Takagi, K., J. Photochem. Photobiol. C Photochem. Rev. 1, 113 (2002).CrossRefGoogle Scholar
3.Yariv, S., Organo-Clay Complexes and Interactions (Marcel Dekker, Inc., New York, 2002), p. 463.Google Scholar
4.Hang, P.T. and Brindley, G.W., Clays Clay Miner. 18, 203 (1970).CrossRefGoogle Scholar
5.Brindley, G.W. and Thompson, T.D., Isr. J. Chem. 8, 409 (1970).CrossRefGoogle Scholar
6.Kahr, G. and Madsen, F.T., Appl. Clay Sci. 9, 327 (1995).CrossRefGoogle Scholar
7.Chen, G., Pan, J., Han, B., and Yan, H., J. Disper. Sci. Technol. 20, 1179 (1999).CrossRefGoogle Scholar
8.Sasai, R., Fujita, T., Iyi, N., Itoh, H., and Takagi, K., Langmuir 18, 6578 (2002).CrossRefGoogle Scholar
9.Chen, G., Iyi, N., Sasai, R., Fujita, T., and Kitamura, K., J. Mater. Res. 17, 1035 (2002).CrossRefGoogle Scholar
10.Iyi, N., Sasai, R., Fujita, T., Deguchi, T., Sota, T., Arbeloa, F. Lopez, and Kitamura, K., Appl. Clay Sci. 22, 125 (2002).CrossRefGoogle Scholar
11.Bujdák, J. and Komadel, P., J. Phys. Chem. B 101, 9065 (1997).CrossRefGoogle Scholar
12.Hofmann, U. and Klemen, R., Z. Anorg. Chem. 262, 95 (1950).CrossRefGoogle Scholar
13.Glaeser, R. and Méring, J., Séanc, C. R. hebd.. Acad. Sci. Paris 265D, 833 (1967).Google Scholar
14.Calvet, R. and Prost, R., Clays Clay Miner. 19, 175 (1971).CrossRefGoogle Scholar
15.Bujdák, J., Slosiariková, H., Nováková, L., and Cicel, B., Chem. Papers 45, 499 (1991).Google Scholar
16.Bujdák, J., Petrovicová, I., and Slosiariková, H., Geol. Carpath. Ser. Clays 43, 109 (1992).Google Scholar
17.Bujdák, J., Iyi, N. and Fujita, T., Clay Miner. 37, 121 (2002).CrossRefGoogle Scholar
18.Lezna, R.O., Detacconi, N.R., Hahn, F., and Arvia, A.J., J. Electro-anal. Chem. 306, 259 (1991).CrossRefGoogle Scholar
19.Kobayashi, H., Takahashi, M., and Kotani, M., Chem. Phys. Lett. 349, 376 (2001).CrossRefGoogle Scholar
20.Ghanadzadeh, A., Zanjanchi, M.A., and Tirbandpay, R., J. Mol. Struct. 616, 167 (2002).CrossRefGoogle Scholar
21.Sonobe, K., Kikuta, K., and Takagi, K., Chem. Mater. 11, 1089 (1999).CrossRefGoogle Scholar
22.Sasai, R., Ogiso, H., Shindachi, I., Shichi, T., and Takagi, K., Mol. Cryst. Liq. Cryst. 345, 39 (2000).CrossRefGoogle Scholar
23.Bujdák, J. and Iyi, N., Clays Clay Miner. 50, 446 (2002).CrossRefGoogle Scholar
24.Bujdák, J., Janek, M., Madejová, J., and Komadel, P., Clays Clay Miner. 49, 244 (2001).CrossRefGoogle Scholar
25.Hähner, G., Marti, A., Spencer, N.D., and Caseri, W.R., J. Chem. Phys. 104, 7749 (1996).CrossRefGoogle Scholar
26.Kobayashi, M., Tokunaga, H., Okubo, J., Hoshi, T., and Tanizaki, Y., Bull. Chem. Soc. Jpn. 61, 4171 (1988).CrossRefGoogle Scholar
27.Higgins, D.A., Byerly, S.K., Abrams, M.B., and Corn, R.M., J. Phys. Chem. 95, 6984 (1991).CrossRefGoogle Scholar
28.Kobayashi, H., Takahashi, M., and Kotani, M., Chem. Phys. Lett. 349, 376 (2001).CrossRefGoogle Scholar