Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T23:27:18.007Z Has data issue: false hasContentIssue false

Molecular mechanics of binding in carbon-nanotube–polymer composites

Published online by Cambridge University Press:  31 January 2011

Vincenzo Lordi
Affiliation:
Princeton Materials Institute, Princeton University, Princeton, New Jersey 08540
Nan Yao*
Affiliation:
Princeton Materials Institute, Princeton University, Princeton, New Jersey 08540
*
a)Address all correspondence to this author.[email protected]
Get access

Abstract

Nanoscale composites have been a technological dream for many years. Recently, increased interest has arisen in using carbon nanotubes as a filler for polymer composites, owing to their very small diameters on the order of 1 nm, very high aspect ratios of 1000 or more, and exceptional strength with Young's modulus of approximately 1 TPa. A key issue for realizing these composites is obtaining good interfacial adhesion between the phases. In this work, we used force-field based molecular mechanics calculations to determine binding energies and sliding frictional stresses between pristine carbon nanotubes and a range of polymer substrates, in an effort to understand the factors governing interfacial adhesion. The particular polymers studied were chosen to correspond to reported composites in the literature. We also examined polymer morphologies by performing energy-minimizations in a vacuum. Hydrogen bond interactions with the ∏-bond network of pristine carbon nanotubes were found to bond most strongly to the surface, in the absence of chemically altered nanotubes. Surprisingly, we found that binding energies and frictional forces play only a minor role in determining the strength of the interface, but that helical polymer conformations are essential.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Treacy, M.M.J, Ebbesen, T.W., and Gibson, J.M., Nature (London) 381, 678 (1996).Google Scholar
2.Wong, E.W., Sheehan, P.E., and Lieber, C.M., Science 277, 1971 (1997).CrossRefGoogle Scholar
3.Krishnan, A., Dujardin, E., Ebbesen, T.W., Yanilos, P.N., and Treacy, M.M.J, Phys. Rev. B 58, 14013 (1998).Google Scholar
4.Salvetat, J.P., Briggs, G.A.D, Bonnard, J.M., Bacsa, R.R., Kulik, A.J., Stöckli, T., Burnham, N.A., and Forró, L., Phys. Rev. Lett. 82, 944 (1999).CrossRefGoogle Scholar
5.Lu, J.P., Phys. Rev. Lett. 79, 1297 (1997).CrossRefGoogle Scholar
6.Yakobson, B.I., Brabec, C.J., and Bernholc, J., Phys. Rev. Lett. 76, 2511 (1996).Google Scholar
7.Yao, N. and Lordi, V., J. Appl. Phys. 84, 1939 (1998).Google Scholar
8.Lordi, V. and Yao, N., J. Chem. Phys. 109, 2509 (1998).CrossRefGoogle Scholar
9.Yao, N. and Lordi, V., Phys. Rev. B 58, 12649 (1998).CrossRefGoogle Scholar
10.Iijima, S., Brabec, C., Maiti, A., and Bernholc, J., J. Chem. Phys. 104, 2089 (1996).CrossRefGoogle Scholar
11.Falvo, M.R., Clary, G.J., Taylor, R.M. II, Chi, V., Brooks, F.P. Jr, Washburn, S., and Superfine, R., Nature 389, 582 (1997).CrossRefGoogle Scholar
12.Ebbeson, T.W., Ajayan, P.M., Hiura, H., and Tanigaki, K., Nature (London) 367, 519 (1994).Google Scholar
13.Tohji, K., Goto, T., Takahashi, H., Shinoda, Y., Shimizu, N., Jeyadevan, B., Matsuoka, I., Saito, Y., Kasuya, A., Ohsuna, T., Hiraga, K., and Nishina, Y., Nature (London) 383, 679 (1996).CrossRefGoogle Scholar
14.Yao, N., Lordi, V., Ma, S.X.C, Dujardin, E., Krishnan, A., Treacy, M.M.J, and Ebbesen, T.W., J. Mater. Res. 13, 2432 (1998);Google Scholar
Lordi, V., Ma, S.X.C, and Yao, N., Surface Science, 421, 150 (1999).Google Scholar
15.Hamada, N., Sawada, S., and Oshiyama, A., Phys. Rev. Lett. 68, 1579 (1992).CrossRefGoogle Scholar
16.Saito, R., Fujita, M., Desselhaus, G., and Dresselhaus, M.S., Mat. Sci. Eng. B 19, 185 (1993).Google Scholar
17.Jishi, R.A., Inomata, D., Nakao, K., Dresselhaus, M.S., and Dresselhaus, G., J. Phys. Soc. Jap. 63, 2252 (1994).Google Scholar
18.Wildöer, J.W.G, Venema, L.C., Rinzler, A.G., Smalley, R.E., and Dekker, C., Nature (London) 391, 59 (1998).CrossRefGoogle Scholar
19.Odom, T.W., Huang, J-L., Kim, P., and Lieber, C.M., Nature (London) 391, 62 (1998).Google Scholar
20.Schadler, L.S., Giannaris, S.C., and Ajayan, P.M., Appl. Phys. Lett. 73, 3842 (1998).Google Scholar
21.Ajayan, P.M., Stephan, O., Colliex, C., and Trauth, D., Science 265, 1212 (1994).Google Scholar
22.Bower, C., Rosen, R., Jin, L., Han, J., and Zhou, O., Appl. Phys. Lett. 74, 3317 (1999).CrossRefGoogle Scholar
23.Jin, L., Bower, C., and Zhou, O., Appl. Phys. Lett. 73, 1197 (1998).CrossRefGoogle Scholar
24.Curran, S.A., Ajayan, P.M., Blau, W.J., Carroll, D.L., Coleman, J.N., Dalton, A.B., Davey, A.P., Drury, A., McCarthy, B., Maier, S., and Strevens, A., Adv. Mater. 10, 1091 (1998).3.0.CO;2-L>CrossRefGoogle Scholar
25.Coleman, J.N., Curran, S., Dalton, A.B., Davey, A.P., McCarthy, B., Blau, W. and Barklie, R.C., Phys. Rev. B 58, R7492 (1998).Google Scholar
26.Tang, B.Z. and Xu, H., Macromolecules 32, 2569 (1999).Google Scholar
27.Sun, H., Mumby, S.J., Maple, J.R., and Hagler, A.T., J. Amer. Chem. Soc. 116, 2978 (1994);Google Scholar
Sun, H., J. Comp. Chem. 15, 752 (1994);Google Scholar
Sun, H., Macromolecules 28, 701 (1995).CrossRefGoogle Scholar
28.Maple, J.R., Hwang, M-J., Stockfisch, T.P., Dinur, U., Waldman, M., Ewing, C.S., and Hagler, A.T., J. Comput. Chem. 15, 162 (1994);CrossRefGoogle Scholar
Hwang, M-J., Stockfisch, T.P., and Hagler, A.T., J. Am. Chem. Soc. 116, 2515 (1994).Google Scholar
29.Davey, A.P. (personal communication).Google Scholar
30. C&EN June 7, 1999, p. 37.Google Scholar
31.Lordi, V., Senior Thesis, Princeton University, Princeton, NJ (June 1999).Google Scholar
32.Silvis, H.C. and White, J.E., Polymer News 23, 6 (1998).Google Scholar
33.Brennan, D.J., White, J.E., and Brown, C.N., Macromolecules 31, 8281 (1998).Google Scholar
34.Tersoff, J. and Ruoff, R.S., Phys. Rev. Lett. 73, 676 (1994).Google Scholar
35.Register, R.A. (personal communication).Google Scholar
36.Falvo, M.R., Taylor, R.M. II, Helser, A., Chi, V., Brooks, F.P. Jr, Washburn, S., and Superfine, R., Nature 397, 236 (1999).Google Scholar
37.Blase, X., Bendict, L.X., Shirley, E.L., and Louie, S.G., Phys. Rev. Lett. 72, 1878 (1994).Google Scholar
38.Stéphan, O., Ajayan, P.M., Colliex, C., Cyrot-Lackmann, F., and Sandré, E., Phys. Rev. B 53, 13824 (1996).Google Scholar
39.Saito, Y., Yoshikawa, T., Bandow, S., Tomita, M., and Hayashi, T., Phys. Rev. B 48, 1907 (1993).Google Scholar
40.Callister, W.D. Jr, Materials Science and Engineering: An Introduction, 2nd ed. (Wiley, New York, 1991), p. 539ff.Google Scholar
41.Encyclopedia of Polymer Science and Engineering, 2nd ed., edited by H.F. Mark, N.M. Bikales, C.G. Overberger, and G. Menges (Wiley, New York, 1987), Vol. 8, p. 25.Google Scholar
42.Encyclopedia of Polymer Science and Engineering, 2nd ed., edited by H.F. Mark, N.M. Bikales, C.G. Overberger, and G. Menges (Wiley, New York, 1987), Vol. 5, p. 370.Google Scholar