Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T03:29:24.408Z Has data issue: false hasContentIssue false

Molecular beam epitaxy of dysprosium barium cuprous oxides using molecular oxygen

Published online by Cambridge University Press:  31 January 2011

E.S. Hellman
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
E.H. Hartford
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
E.A. Fitzgerald
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
Get access

Abstract

Epitaxy of cupric oxides, such as the high temperature superconductor YBa2Cu3O7, using “vacuum” techniques requires either activated forms of oxygen, such as atomic oxygen, oxygen plasma, or ozone, or a relatively high pressure of molecular oxygen. In contrast, cuprous oxides (those with formal valence of copper less than +2) can be grown epitaxially in molecular oxygen at pressures below 10−4 Torr. We have explored this regime of epitaxial growth because of the possibility of forming DyBa2Cu3O7 through low temperature ex situ oxidation of DyBa2Cu3O6. We find that the dominant phases growing epitaxially on MgO are CuDyO2, Cu2O, CuBa2O2, DyBa2Cu3O6, and the barium-rich perovskite solid solutions. Sticking coefficients of barium and dysprosium depend on substrate temperature and flux composition for substrate temperatures between 550° and 700 °C. We have obtained superconducting films by annealing Dy-rich, Cu-deficient films in oxygen at 400 °C. The nonstoichiometry (with respect to DyBa2Cu3O6) appears to stabilize “DyBa2Cu3O6,” at low oxygen pressures. We also discuss the use of copper in effusion cells.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hammond, R. H. and Bormann, R., Physica C 162164, 703 (1989).Google Scholar
2.Hellman, E. S. and Hartford, E. H., Proc. SPIE 1187, 22 (1990).Google Scholar
3.Hellman, E.S. and Hartford, E.H., J. Vac. Sci. Technol. 8, 332 (1990).CrossRefGoogle Scholar
4.Webb, C., Weng, S-L., Eckstein, J. N., Missert, N., Char, K., Schlom, D. G., Hellman, E.S., Beasley, M.R., Kapitulnik, A., and Harris, J.S., Appl. Phys. Lett. 51, 1191 (1987). Note that this study used copper evaporated from a PBN crucible; it is possible that the results may have been affected by boron contamination.Google Scholar
5.Lathrop, D. K., Russek, S. E., and Buhrman, R. A., Appl. Phys. Lett. 51, 1554 (1987).Google Scholar
6.Kwo, J., Hong, M., Trevor, D. H., Fleming, R. M., White, A. E., Farrow, R. C., Kortan, A. R., and Davidson, B. A., Appl. Phys. Lett. 53, 2683 (1988).CrossRefGoogle Scholar
7.Berkley, D.D., Johnson, B.R., Anand, N., Beauchamp, K.M., Conroy, L.E., Goldman, A.M., Maps, J., Mauersberger, K., Mecartney, M.L., Morton, J., Tuominen, M., and Zhang, Y. J., Appl. Phys. Lett. 53, 973 (1988).Google Scholar
8.Silver, R. M., Berezin, A. B., Wendman, M., and Lozanne, A. L. de, Appl. Phys. Lett. 52, 2174 (1988).CrossRefGoogle Scholar
9.Terashima, T., Iijima, K., Yamamoto, K., Bando, Y., and Mazaki, H., Jpn. J. Appl. Phys. 27, L91 (1988).Google Scholar
10.Missert, N., Laderman, S.S., Beasley, M.R., Mooij, J.E., Kapitulnik, A., Hammond, R., Geballe, T. H., Rosenthal, P., Matijasevic, V., Barton, R., Garwin, E., and Lu, C., IEEE Trans, on Magnetics 25, 2418 (1989).CrossRefGoogle Scholar
11.Matijasevic, V., Rosenthal, P., Shinohara, K., Marshall, A.F., Hammond, R. H., and Beasley, M.R., J. Mater. Res. 6, 682 (1991).Google Scholar
12. Here we use “epitaxy” loosely to mean orientation, both in-plane and normal, of a crystalline material by a substrate.Google Scholar
13.Hellman, E. S., Schlom, D. G., Marshall, A. F., Streiffer, S. K., Harris, J. S., Jr., Beasley, M.R., Bravman, J.C., Geballe, T.H., Eckstein, J.N., and Webb, C., J. Mater. Res. 4, 476 (1989).Google Scholar
14.Spah, R. J., Hess, H. F., Stormer, H. L., White, A. E., and Short, K. T., Appl. Phys. Lett. 53, 441 (1988).CrossRefGoogle Scholar
15.Schlom, D. G., Ph. D. Dissertation (Stanford University, 1990).Google Scholar
16.Marshall, A. F., Matijasevic, V., Rosenthal, P., Shinohara, K., Hammond, R. H., and Beasley, M. R., Appl. Phys. Lett. 57, 1158 (1990).Google Scholar
17.Eibl, O. and Roas, B., J. Mater. Res. 5, 2620 (1990). The conditions were 750–800 °C, 0.01 mbar.CrossRefGoogle Scholar
18.Dube, D., Champagne, B., Lambert, P., and Page, Y. Le., Mater. Lett. 9, 353 (1990).CrossRefGoogle Scholar
19.Ahn, B.T., Lee, V.Y., Beyers, R., Giir, T. M., and Huggins, R.A., Physica C 167, 529 (1990).CrossRefGoogle Scholar
20.Beyers, R. and Ahn, B.T., Annu. Rev. Mater. Sci. 21, 335372 (1991).CrossRefGoogle Scholar
21.Wiesner, U., Krabbes, G., and Ritschel, M., Mater. Res. Bull. XXIV, 1261 (1989).Google Scholar